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Abstract—Despite the recent advances in medical data
organization and structuring, electronic medical records
(EMRs) can often contain unstructured raw data, tempo-
rally constrained measurements, multichannel signal data
and image data all of which are often difficult to compare
and contrast in large quantities due to their sizes and
variation. We present a proof of concept system that can
alleviate this by mapping EEG data to a relatively com-
pressed n-dimensional space where the Euclidean distance
between data points as similarity measure. We optimize a
deep neural network mapping by using a triplet-based loss
function. A system of this type could be used by medical
professionals query and explore EEG data. To verify that
this clustering method learns a meaningful representation
of the data, we apply a KNN classifier to the output. We
achieve a 58.6% classification accuracy operating on the
neural network sourced embeddings on the six class TUH
EEG Cohorts dataset provided by Temple University.

I. INTRODUCTION

The health care industry commonly stores diverse
instrumentation signals such as EEG, EKG, MEG, X-
Ray, MRI, CAT in a variety of digital formats commonly
referred as Electronic Medical Records (EMR). These
records can also contain natural language notes from
medical professionals. It is difficult to perform complex
information retrieval on these records. Rich information
retrieval may open up the ability to compare and contrast
patient records en-masse leading to new understand-
ings of diseases pathologies. For example, while the
healthcare industry possesses a large amount of data on
Alzheimer’s Disease, a common chronic neurodegenera-
tive disease, medical professionals are unable to find the
underlying cause of this disease and why it worsens over
time. If such data can be transformed to into an accessible
and patient invariant format, medical professionals may
be able to pinpoint the cause of the disease and discover
better treatments. Towards this goal, Picone et al. [1] have
demonstrated a system that can automatically discover,
time-align and annotate EEG events. These annotations
can help professionals perform cohort retrieval.

We present a novel system for clustering of raw
EEG signal clustering. We seek to learn an embedding
space using a deep neural network on one second EEG

signals sampled at 250 Hz. We train the network such
that the Euclidean distance between any two signals is
a measurement of signal similarity. Signals that have
the same class and similar features are expected to be
clustered close together while those that are different are
expected to have larger distances between each other
in the embedding space. At inference time, we use
the network to map EEG signals onto this embedding
space for querying. New samples could be presented
to this system at inference time to be mapped into
the embedding space. After this mapping, clustering or
other distance-based methods could be employed to find
similar EEG records as part of a cohort retrieval system.

The signal event detection and classification work in
[1] uses hidden Markov models. These models have been
shown to work well with sequential data. Although this
model achieved 91.4% sensitivity and 8.5% specificity on
signal classification, it is not possible to infer similarity
of samples from the output of a classifier.

In contrast to the prior work, we optimize a deep neu-
ral network according to a triplet loss function. Triplets
of anchors, positives, and negatives were chosen such
that the anchor and positive were of the same class and
the anchor and the negative were of different classes.
The network is optimized to minimize the distance
between the anchor and positive classes and maximize
the distance between the anchor and negative classes. In
doing so, the network learns an embedding that places
similar signals (anchor and positive) close together in
the embedding space, and dissimilar signals (anchor and
negative) far apart in the embedding space.

We organize the rest of the paper in the following way.
In Section II, we review the literature relevant to triplet
loss techniques. In Section III, we describe the data and
how we organize it for easy triplet mining. In Section IV,
we describe our final models, their quantitative and
qualitative characteristics, and our experimental results.

II. RELATED WORK

We choose to an approach similar to [2], which used a
deep convolutional neural network (DCNN) trained with
a triplet loss function to create an embedding space for
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facial recognition and similarity search. This model was
trained to minimize the distance between an anchor and
a positive and maximize the distance between an anchor
and a negative where dap = f(xa) − f(xp) is defined
as the distance between the anchor and positive and
dan = f(xa)− f(xn) is defined as the distance between
the anchor and the negative. Mathematically,

‖dap‖2 + α < ‖dan‖2 (1)

where f(x) ∈ Rd represents the computational graph, a
is the anchor, p is the positive which is the same class
as the anchor, n is the negative which is not the same
class as the anchor and α is a hyperparameter expressing
the minimum distance between. Thus, the loss function
becomes

J =

N∑
i=1

[
‖dap‖2i − ‖dan‖

2
i + α

]
(2)

where N is the size of the mini batch the network
is being trained on. This approach serves as a first
experiment in learning an embedding space for EEG
signals. We provide, as a point of comparison, a survey
of more sophisticated methods for learning embedding
spaces which will be relevant to further experimentation.

Lifted structured embedding [3] is a similar image
metric learning scheme, where each positive pair is
compared against all the negative pairs weighed by
the minimum expected distance between them. The ad-
vantage is that the loss function is differentiable and
incorporates “online hard negative mining”. This scheme
considers both the local and global structure of the
embedding space. As opposed to triplet approach, this
method does not require partitioning data into tuples
in any manner. This method achieved state of the art
performance on standard datasets such as CUB200-2011,
Cars196 and Stanford on-line products. However, this
method represents a computational trade-off that may not
necessary.

Joint Unsupervised Learning (JULE) [4] is a recurrent
method to compute image embeddings. However, recur-
rent networks are difficult to optimize, suffering from
training instability.

III. DATA

The data for this study was derived from Temple
University Hospital’s EEG corpus (TUH EEG corpus).
This dataset consists of 22 channel EEG signals with
electrodes placed according to the 10-20 system. Each

TABLE I. DATASET CLASSES

Codename Description

BCKG Background noise
ARTF Artifacts
EYBL Eyeball movement
SPSW Spikes and sharp waves

PLED Periodic lateralized epileptiform
discharges

GPED Generalized periodic epileptiform
discharges

channel is annotated as pertaining to one of six classes
as described in Table I with a granularity of 1 second.
For details on this dataset see [5].

We apply notch filters at 60 Hz and 120 Hz to remove
power line noise, and a bandpass filter (1–70 Hz pass-
band) to remove any high-frequency noise as the bulk
of the signal power lies within this band. We apply the
Short-Term Fourier Transform (STFT) with a window
size of 140 samples and a stride of 2 samples results in a
71×125 dimensional matrix for each one-second window
of EEG signal. Additionally, we globally normalize the
signal power.

The dataset is highly imbalanced (more than 80% is
labeled as background noise). We use stratified sampling
to help compensate for this imbalance.

We split the one-second examples into mutually ex-
clusive sets for training and validation. Each set is
disjoint in both patient and sample acquisition; that
is no single patient appears in both sets, and no two
windows from a single acquisition appear in both sets.
We follow an 85/15% split for training/validation. Due
to the large nature of the training set in this situation and
the impossibility of training on every triplet possible, a
random selection 15% of the training set was used to
train the networks.

IV. EXPERIMENTAL DESIGN & RESULTS

We trained a DCNN trained with a triplet-based
loss function and evaluated the results. A DCNN is
appropriate in this context because the time domain
signal has be transformed using the STFT and can be
represented in a matrix like an image. Traditionally,
DCNNs tend to have high accuracies on images and
therefore, it was deemed appropriate to use a DCNN
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for this particular problem. To confirm that the system
learns a meaningful embedding, we perform a simple
KNN classification on the outputs of the system on the
validation set. Additionally, we look at a t-SNE plot of
the resulting embedding in a 2-dimensional space.

To verify that the performance of this system is
reasonable, we also design and train a baseline DCNN
classifier of similar complexity, and compare the classi-
fication results.

A. DCNN with Triplet Loss

Our network architecture is specified in Table II. We
set the margin α = 0.5, the learning rate to 1×10−5 and
train for 200 thousand iterations. The embeddings are fed
into a k-NN (k = 31). With these hyperparameters, we
achieve a validation accuracy of 58.6%. The confusion
matrix for this is shown in figure Figure 1. Additionally,
we the t-SNE plot of the resulting embedding in Figure 2.
From the plot, you can clearly see GPED separating from
the other classes in the 2-dimensional space. This agrees
with the confusion plot indicating that GPED is correctly
classified 94% of the time.

TABLE II. NETWORK ARCHITECTURE FOR DCNN

Layer Input Output Kernel

conv1 71× 125× 1 71× 125× 32 5× 5

maxpool1 71× 125× 32 34× 61× 32 5× 5

conv2 34× 61× 32 34× 61× 64 3× 3

maxpool2 34× 61× 64 16× 30× 64 3× 3

conv3 16× 30× 64 16× 30× 128 2× 2

maxpool3 16× 30× 128 8× 15× 128 2× 2

conv4 8× 15× 128 8× 15× 256 1× 1

maxpool4 8× 15× 256 4× 7× 256 2× 2

conv5 4× 7× 256 4× 7× 1024 4× 4

maxpool5 4× 7× 1024 1× 2× 1024 4× 4

flatten 1× 2× 1024 2048 N/A
fc1 2048 1024 N/A
fc2 1024 512 N/A
fc3 512 256 N/A

output 256 64 N/A

B. Baseline DCNN Classifier with Softmax Loss

As a baseline we add an extra fully-connected layer
to the network in Table II as a classification layer with
a softmax activation. As this is now a classification task,
the loss function is changed to cross-entropy. We set

BCKG
ARTF

EYBL
GPED

SP
SW PLED

Predicted label

BCKG

ARTF

EYBL

GPED

SPSW

PLED

True label

0.66 0.11 0.12 0.00 0.03 0.08

0.18 0.50 0.19 0.03 0.06 0.04

0.12 0.17 0.45 0.01 0.09 0.15

0.00 0.00 0.00 0.94 0.04 0.02

0.10 0.05 0.12 0.10 0.26 0.37

0.04 0.00 0.08 0.16 0.07 0.65

Fig. 1. Confusion matrix for the DCNN clustering network

BCKG
ARTF
EYBL
GPED
SPSW
PLED

Fig. 2. t-SNE visualization of test examples passed through the
clustering network.

the learning rate to 1 × 10−5 and train the network for
200 thousand iterations. With these hyperparameters, we
achieve a validation accuracy of 50.2%. These results
are significant since random guessing would only yield
a theoretical accuracy of 16%.
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Predicted label

BCKG

ARTF

EYBL

GPED

SPSW

PLED

True label

0.49 0.15 0.11 0.06 0.14 0.05

0.06 0.57 0.24 0.05 0.02 0.05

0.07 0.16 0.54 0.03 0.17 0.03

0.01 0.00 0.00 0.82 0.08 0.08

0.08 0.07 0.22 0.20 0.31 0.12

0.04 0.00 0.10 0.20 0.32 0.35

Fig. 3. Confusion matrix for the baseline DCNN classifier

V. CONCLUSION AND FUTURE WORK

We demonstrated a method to learn embeddings for
EEG signals in an end-to-end fashion. While our system
is able to accurately classify the known labels in the TUH
dataset, we intend to analyze it for outliers detection
and one-shot learning on classes available in the training
set. Since our proof-of-concept network is small, it is
possible that a more expressive network could obtain
better results.

We intend to do an in-depth comparison between the
baseline embeddings space (i.e features produced by the
penultimate layer) and the experimental one. Each is
predicted by functions with identical forms for different
parameters. Therefore a comparison between the two
embedding spaces speaks directly to the training method
for selecting the parameters.

As the TUH corpus also includes physician notes,
we would like to investigate ways to incorporate these
notes into a cohort retrieval scheme. This could be
done by learning a similar embedding for the text data
and then performing a clustering on a joint embedded
space. Another possible area for investigation would be
to leverage an adaptive density discrimination technique
[6] to shape clusters in the EEG embedding space using
the annotations as side information.

Finally, it is possible that these ideas can be extended

to other types of raw medical data such as MRIs and
X-Rays.
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