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Abstract—Fall accidents cause severe damage to health, some-
times even mortality in older adults. With the increasing number
of the elderly suffering from fall events, wearable products are
in great demand. However, most of them for fall detection
have difficulty in reducing false positive caused by fall-alike
activities. In this study, we focus on evaluating the accuracy
of fall detection among a set of fall-alike activities using a low-
complexity fall detection algorithm and a 3-axis accelerometer.
Quantitative evaluation in controlled study tunes the algorithm’s
parameters and provides us a 90% fall detection accuracy. The
experiment result shows that jumping onto bed followed by a
rest has the highest false positive rate of 45% and running
followed by a sudden stop reaches 32%, while running upstairs
or downstairs and standing quickly from sofa is less confusing
with the false positive rates of 20% and 5%, respectively. The
false positive rate is decided by the sensitivity of the threshold
and the intensity of motions in the experiment. We also perform a
10-hour longitudinal study on real-life activities of one subject. In
the longitudinal real-life pilot study, the low-complexity algorithm
demonstrates the high accuracy, which indicates its effectiveness
in real life.

I. INTRODUCTION

The fall accident is one of the major health risks, especially
for the elderly (aged 65+) [1]. Thirty three percent of the
elderly are reported having experienced at least one fall per
year [2]. As reported in [3], 68% hospitalization of the elderly
are fall-related and the percentage with age above 85 rises to
86% [3]. In addition, the direct annual medical cost of elderly
falls rises to about $20 billion dollars [4]. Even worse, fall has
become one of leading causes of injurious death among the
elderly, about 10, 000 deaths per year among people aged 65
years and older in the U.S. occur due to fall accidents [5].

As observed above, fall detection is urgently required.
Wearable sensors such as inertial sensors play a key role in
fall detection compared with other methods such as using
camera [6]. In the past decade, there are a large number of
research work [7]–[10] and commercial products [11] [12] in
fall detection, all of which tend to employ a low-complexity
algorithm. Considering the constraint of energy consumption
and battery size, wearable fall detection products require a
simple algorithm with less computational complexity.

Unfortunately, all the fall detection algorithms confront with
the same challenge, false positive. The average accuracy is
not the only standard to evaluate a fall detection algorithm.
A fall detection solution without a low false positive rate

will bother users for its frequent false alarm. We call those
non-fall activities, which are likely to be detected as fall
events by fall detection algorithms, as fall-alike activities. As
a result, fall-alike activities introduce false positive. In [13],
certain fall-alike situations, such as lying down on bed, are
considered in evaluating the algorithm. However, this study is
not specifically tailored to consider these fall-alike situations,
and not much detail about these situations can be found in
their research. Further more, other fall-alike situations are not
mentioned. To the best of our knowledge, there is no study
specially focusing on fall-alike activities.

In this study, our aim is to study the false positive rate
of different fall-alike activities. We propose a low-complexity
algorithm first, then tune the parameters for the algorithm in
order to get the best performance. We perform an experiment
including five typical fall-alike activities, the experimental
result indicates above 90% fall detection accuracy in total 100
fall samples, evenly from ten subjects (four women and six
men). The receiver operating characteristics (ROC) curve is
also used to find a balance between fall detection accuracy
and false positive rate. Surprisingly, some fall-alike activities
we thought to be confusing can be distinguished easily, such
as suddenly stopping a car before a red light and squatting
quickly to pick up something. Another work we emphasize
is the real-life activities study using this algorithm. The 10-
hour consecutive acceleration data from one subject show the
performance of the low-complexity algorithm in real life.

The remaining of this paper is organized as follows: Sec-
tion II discusses some recent threshold-based fall detection
algorithms. Section III describes the design of the low-
complexity algorithm and its implementation. In section IV,
a confusion table of fall-alike activities along with the ROC
curves are presented to discuss the parameters in the algo-
rithm. We also compare the threshold based algorithm with
machine learning based fall detection method to figure out the
difference between the two fields. With the suitable parameter
combination, the low-complexity algorithm is applied to study
the real-life performance. Finally, section V concludes the
paper.

II. RELATED WORK

Fall detection aims at decreasing the damage caused by
falls. As mentioned in Section I, to get a small, lightweight,



and durable wearable fall detection product, people prefer
low-complexity detection algorithms. Some researchers try to
make their algorithm as simple as possible by using only
one threshold. Bourke et al. place a 3-axis accelerometer
on people’s trunk and thigh separately to test their single-
threshold algorithm [13]. However, relying on only one factor
limits the detection effect. People start to combine multiple
factors in their detection algorithms. As reported in [14], the
value of a 3-axis accelerometer sensor placed at the height of
waist during a falling event will surpass 2 g with frequency
bandwidth of 20 Hz. Based on this, Daz et al. combine two
factors to develop their algorithm by setting one amplitude
and frequency flag separately: amplitude flag is related to the
vertical acceleration and the other is associated with acceler-
ation signal energy [15]. Another threshold-based algorithm
estimates users’ speed by integrating acceleration collected
from wrist [16]. Similarly, Lindemann et al. put accelerometers
into the hearing aid and setting three thresholds: sum of
vectors of acceleration in vertical-lateral plane, velocity and
acceleration of all spatial components [11]. In [17], vertical,
lateral, and forward acceleration will be used separately in
different detection periods to estimate people’s gait speed
for abnormal gait conditions. Chen et al. estimate human
body’s orientation change during a fall event by calculating
the dot product of acceleration vectors before fall and after,
which serves the second deciding factor along with impact
detection [18]. Multiple factors-based algorithms are more
specific and reliable in general.

The location of the accelerometer also can not be ig-
nored when designing a fall detection algorithm. Kangas et
al. evaluate three low-complexity fall detection algorithms
with accelerometer placed on head, waist, and wrist, sepa-
rately [19]. Result shows that head and waist are better than
wrist. Considering the feasibility of wearing products on head,
waist position is used more widely [18]. In addition, chest is
another good choice for fall detection [20].

III. LOW-COMPLEXITY FALL DETECTION ALGORITHM

The low-complexity fall detection algorithm we use only
needs acceleration from one 3-axis accelerometer fixed on
chest. This section covers the state machine of the algorithm
and the implementation.

A. Description of Algorithm

Considering some daily activities incur similar peaks in
acceleration as falls such as running and jumping, we develop
a algorithm combining multiple thresholds. In the algorithm,
we assume that people losing consciousness have a relative
stable acceleration compared to other situations, according to
the conclusion from [21] and experiment result from [18].
There are five states as shown in Fig. 1: Initial state
corresponds to the start of detection with time t to be 0. A reset
button also leads to Initial for next use when the alarm is
raised. State0 waits for every 0.01 second (the accelerome-
ter’s sampling frequency is 100 Hz ) to read acceleration and
send to State1. State1 compares the acceleration to the

first threshold TH1 for possible fall candidates, and then send
those fall candidate moments to State2. State2 monitors
fall candidates for a certain period and reports body state as
Inactive or Active. We regard active state as safe because the
elderly can still move and the state goes back to State1
for continuous detection. Otherwise, for inactive state, our
algorithm regards it dangerous and goes to State3 to raise
an alarm. In State2, another threshold TH2 is used.

B. Implementation of Algorithm

We first apply a median filter to the raw data from ac-
celerometers, the overall acceleration is calculated like this:

Aoverall =
√
x2 + y2 + z2, (1)

where x, y, z stand for acceleration along vertical, lateral, and
anterior-posterior direction after median filter. The implemen-
tation of State1 starts from comparing Aoverall to threshold
TH1. If under TH1, the state goes back to State0 waiting
for next acceleration. Once Aoverall surpasses threshold TH1,
this moment will be sent to State2 for further monitoring,
as shown in Algorithm1. The function ProcessInState2(t) de-
scribes how State2 processes those fall candidate moments:
We calculate the overall differential of the acceleration:

Adiff =
√
diff(x)2 + diff(y)2 + diff(z)2, (2)

where diff(x), diff(y) and diff(z) represent differential
of acceleration along x, y, z direction, which is suitable to
represent older adult’s active state. Even we consider people’s
breathing and heart rate, the differential is still at a low level
when losing consciousness compared to other daily activities
such as walking. In State2, a monitoring period is selected
following the fall to report the body state. Considering slight
movement of body may happen due to gravity after elderly
falling and losing conscious, we divide the whole monitor
period into n sub-periods evenly and introduce another thresh-
old TH3 to help decide body state. The maximum value of
differential during a sub-period is compared with TH2. If it
is larger than TH2, this sub-period is reported as Activesub,
otherwise is reported as Inactivesub. TH3 stands for the
minimum percentage of inactive sub-periods to make the final
report to be inactive. In the experiment, we choose n to be 100
and TH3 as 95%. This improvement can effectively reduce the
risk of being interrupted by other artifact motions.

C. Parameters Tuning

Besides the thresholds TH1, TH2, and TH3 as mentioned
above, there are another three time domain parameters used
in the algorithm: t1, t2, and t3. When to start the monitoring
period after peak makes difference of the final result. As shown
in the Fig. 2, the time Aoverall exceeds TH1 is marked as
tTH1

and the time Aoverall reaches the peak is marked as
tpeak. Obviously, figuring out tpeak helps us accurately locate
the suitable start time of the monitoring period tstart because
the time before tpeak can be ruled out. Parameter t1 is used to
figure out tpeak, to be precise, tpeak is the max value within
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Fig. 1. State transition diagram in the fall detection algorithm.

Fig. 2. Diagram of overall acceleration within a fall sample.

tTH1
and tTH1

+t1. t1 is set from 0.5s to 5s before evaluation.
In Table II, t2 is used to approach the end time of peak as
well as tstart and is set from 0.5s to 5s before evaluation. t3
determines how long the monitoring period should last. In the
experiment, t3 starts from 2s to 10s.

IV. EVALUATION

In this section, we conduct several experiments to evaluate
the algorithm. First, we introduce the setup of the data
collection and the experiment subjects. Then, the quantitative
evaluation in the controlled study is presented with ROC
curves and a confusion table of fall-alike activities. Finally, we
perform a ten-hour pilot study to evaluate its real-life usability.

A. Data Collection

1) Experimental Setup: The 3-axis accelerometer with fre-
quency of 100 Hz is placed on the subject’s chest as shown in
Fig. 3 (d). Subjects press a button to start and stop recording.
In the experiment, the subject waits for extra three seconds to
avoid interruption when starting and stopping recording. The
data are collected from ten subjects including six men and
four women. Since it is dangerous to invite the elderly to be
our subjects, all the ten subjects are among their twenties.
However, our subjects are very representational. Our male
subjects’ weights range from 67 kg to 93 kg and heights from
170 cm to 185 cm and female subjects’ weights range from
48 kg to 65 kg and heights from 155 cm to 170 cm, which
cover the most types of figures among people.

Algorithm 1 Low-complexity multiple thresholds algorithm
1: Initial: time t = 0s;
2: In State0: wait 0.01s for State1;
3: Into State1;
4: while no alarm do
5: if Aoverall(t) > TH1 then
6: Into State2:
7: status = ProcessInState2(t);
8: if status = Inactive then
9: Into State3, alarm;

10: else
11: t = tstart;
12: Into State0;
13: end if
14: else
15: Into State0;
16: end if
17: end while
18:
19: Function ProcessInState2(t)
20: Input: moment t
21: Initial: i = 1, n = 100, TH3 = 95%;
22: Divide monitoring period into n sub-periods evenly from

P1 to Pn;
23: while i < (n+ 1) do
24: if max(Adiff (Pi)) < TH2 then
25: record Pi as Inactivesub;
26: else
27: record Pi as Activesub;
28: end if
29: i++;
30: end while
31: if numberInactivesub

> TH3 ∗ n then
32: return Inactive;
33: else
34: return Active;
35: end if

2) Experimental Scenarios: There are two parts of datasets:
fall samples and fall-alike samples. For fall samples, every
subject falls onto a mattress on the ground with three forward,
three backward, two left-side, and two right-side, in total 100
fall samples. We recorded about 30 seconds for every fall sam-
ple to ensure the completeness of data and our subjects stay
still after falling to simulate the situation of losing conscious.
People fall and can still stand up soon are not regarded as
dangerous in the study. For fall-alike part, samples include
sitting and standing, walking, walking upstairs and downstairs,
running and jumping with detailed description in Table I.
For each fall-alike event in Table I, every subject contributes
ten samples. In Fig. 3, sitting onto sofa and standing from
sofa quickly (Fig. 3 (a), (b)), running downstairs and upstairs
(Fig. 3 (c), (d)), jumping onto bed (Fig. 3 (e), (f)), and running
then stopping to rest (Fig. 3 (g), (h)) are presented.
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Fig. 3. Scenarios of fall-alike activities with the accelerometer located on
subject’s chest: (a) Sitting onto sofa, (b) Standing from sofa, (c) Running
upstairs, (d) Running downstairs, (e) Jumping onto bed, (f) Rest lying on
bed after jumping, (g) Running outsides, (h) Stop running and rest.

B. Quantitative Evaluation in a Controlled Study

1) Time Domain Parameters: as illustrated in Table II and
Fig. 2, there are six parameters: TH1 from 2.2 to 3.8, t1
from 1 second to 5 seconds, t2 from 1 second to 5 seconds,
t3 from 1 second to 5 seconds, TH2 from 0 to 8, and TH3

from 80% to 99%. These ranges of parameters come from
the analysis of raw data. After analyzing Aoverall and Adiff ,
we first chose TH1, TH2 and TH3 to be 2.8, 5, 95%, which
is proved to be the maximal value point in Fig. 4. After
comparing the effect of various combinations of the three time
domain parameters, the final combination achieved the 90%
accuracy: t1 = 4s, t2 = 2.5s, t3 = 2.5s.

2) ROC Curve: We chose the three time domain parameters
as t1 = 4s, t2 = 2.5s, t3 = 2.5s and started to tune thresholds.
The ROC curve directly shows the relationship between false
positive rate (FPR) and true positive rate (TPR), which helps
tune thresholds of the algorithm for a balance of TPR and
FPR. We first studied the third threshold TH3 as shown in
Fig. 5. We set TPR to be 70%, 80%, and 90%, respectively,
to see the corresponding FPR at different TH3 value. From the
diagram, we found TH3 as 95% is suitable with its 19% FPR
at 90% TPR. In Fig. 6, the purple curve named Combined
combines TH1 and TH2 with other parameters tuned. The
yellow curve named TH2 shows the result of only changing
TH2 with TH1 as 2.8 while the red curve named TH1 only
changes TH1 with TH2 as 5. As shown in the figure, neither
red curve TH1 or yellow curve TH2 could detect all the
fall events or perform better than the purple curve Combined,
which showed the advantage of combining multiple thresholds.
The blue curve named SVM is the ROC curve from support
vector machine with the linear kernel function and 10 cross-
validation. We changed the length of fall samples and fall-alike
samples from 10 seconds to 2 seconds for the SVM classifier.

In Fig. 6, point A (FPR = 20%, TPR = 80%) and point B
(FPR = 15%, TPR = 84%) represent the balance of FPR
and TPR for curves of SVM and Combined, respectively. From
the ROC curve, we found that the low-complexity algorithm
with parameters tuned performed better than SVM, which
indicated the advantage of the multiple-threshold algorithm.
We also studied the sensitivity of both TH1 and TH2. As
shown in Fig. 4, the accuracy combines the fall detection
rate and fall-alike events detection rate. The maximal point
corresponds perfectly with the ROC curve.

MAXIMAL   (TH1=2.8, TH2=5)

Fig. 4. Sensitivity of TH1 and TH2 in detection accuracy

3) Confusion Table of Fall-alike Activities: the confusion
table is shown in Table III. We found that jumping onto bed
followed by a rest is the most confusing, whose FPR reaches
45% with its acceleration and differential of acceleration
shown in Fig. 7 (a), (b). Running followed by a sudden stop
also reaches 32% FPR with its acceleration as well as the
differential of acceleration shown in Fig. 7 (c), (d). On the
other hand, standing from sofa and running downstairs quickly
have FPR of 20% and 5%, respectively. Sitting quickly onto
sofa is supposed to be confusing whose false positive is largely
decided by the first threshold TH1 and how quickly subjects
sit. In the experiments, subjects are requested to sit more
quickly than usual and FPR is 27%. Running with a stop and
jumping onto bed are more related with the second threshold,
most samples of them easily reach TH1 = 2.8. Fig. 7 shows
these two fall-alike activities in detail. Standing from sofa has
low FPR for its low Aoverall. Running upstairs or downstairs
has high Aoverall but TH2 can rule it out.

Fig. 5. Diagram of FPR at 70%, 80%, 90% TPR of different TH3



TABLE I
FALL AND FALL-ALIKE ACTIVITIES SCENARIOS IN THE EVALUATION

Scene Action Location # of events Description
1 Fall Indoor 10 Fall includes forward, back and lateral direction, stay still after fall
2 Sit onto sofa Indoor 10 After sitting onto sofa, use cell phone to browse some news
3 Stand from sofa Indoor 10 After standing from sofa, holding on cell phone to view some news, but do not move
4 Jump onto bed Indoor 10 Simulate people jump to bed for a rest, stay still after onto bed.
5 Run and rest Outdoor 10 Run for about 10seconds and then quickly stop to rest, do not walk after stop
6 Run downstairs Indoor 10 After running downstairs, walk softly

TABLE II
SUMMARY OF FALL DETECTION PARAMETERS

Parameters Range Description Usage
TH1(g) 2.2− 3.8 First threshold to detect possible fall candidate tTH1

is the time when TH1 is reached
t1(s) 1.0− 5.0 A range of time in which tpeak will be found tpeak in tTH1 to tTH1 + t2

t2(s) 1.0− 5.0 A range of time where tstart will be found tstart = tpeak + t2

t3(s) 1.0− 5.0 A range of time which is the length of monitor period Monitor starts from tstart to tstart + t3

TH2(g/s) 0− 8.0 Second threshold to determine if subject stays active Max(sub-period) smaller than TH2 is Inactivesub
TH3 0%− 100% A threshold to determine if subject stay active Percentage of inactive sub-periods larger than TH3 is Inactive

TABLE III
CONFUSION TABLE WITH PARAMETER COMBINATION: TH1 = 2.8g, t1 = 4s, t2 = 2.5s, t3 = 2.5s, TH2 = 3g/s, TH3 = 95%

Fall Sit onto sofa Stand from sofa Jump onto bed Run and stop Run downstairs total Recall
Fall 90 non-fall 10 100 90%

Sit onto sofa 27 73 N/A N/A N/A N/A 100 73%

Stand from sofa 5 N/A 95 N/A N/A N/A 100 95%

Jump onto bed 45 N/A N/A 55 N/A N/A 100 55%

Run and stop 32 N/A N/A N/A 68 N/A 100 68%

Run downstairs 20 N/A N/A N/A N/A 80 100 80%

Fig. 6. ROC curves of TH1, TH2 combined, and from SVM

C. Evaluation of a Real-life Pilot Study

To investigate the effect of the low-complexity algorithm
in real-life, we monitored the ten-hour daily life of one of
our male subjects. Since the fall detection rate is already
very high and are studied in the experiment, we want to test
the false positive rate in real-life. Wearing the T-shirt with
the sensor on his chest, the subject started to record data
in the morning before he went to school and ended up the
collection until he came back home and was ready to sleep
at night. Recording starts from 12 : 15pm to 10 : 30pm,
the total length is about ten hours. The overall acceleration
and activity distribution during the ten hours can be obtained

(a) (b)

(c) (d)

Fig. 7. Two samples of jumping onto bed and running and stop: (a) Overall
acceleration of jumping onto bed, (b) Overall differential of acceleration of
jumping onto bed, (c) Overall acceleration of running and stop, (d) Overall
differential of acceleration of running and stop.

in Fig. 8(a) and in Fig. 8(b), respectively. Driving happened
when the subject went to school and out for dinner, some
acceleration peaks during driving period indicate sudden stops.
Walking happened when subject went from parking lot to
classroom, and classroom to classroom. In walking stage,
taking elevator and walking upstairs and downstairs are also
included because the duration of these activities are too short
to be distinguished accurately. Sitting stage most happens in
classroom and library. Standing up from chair incurs some
small peaks in sitting stage. At around 5pm, the subject went



out for dinner and shopping. When the subject went back home
at night, he sat onto sofa to watch TV, which incurred another
peak. All these special situations are illustrated with pictures
in Fig. 8(a). In the pilot study, most fall-alike activities are
tested and our algorithm reports no fall during the consecutive
ten hours.

(a) The overall acceleration of ten-hour daily life

Driving

Sitting

Walking

(b) The activity distribution for  ten-hour daily life

Fig. 8. Ten-hour daily life including running, driving a car, walking upstairs
and downstairs, using elevator, sitting and standing.

V. DISCUSSION AND CONCLUSION

In this study, we present a low-complexity threshold based
fall detection algorithm. The controlled study shows the algo-
rithm reaches a balance of good fall detection accuracy and
low false positive rate. Fall-alike activities are discussed in
causing false positive. Machine learning method is used to
compare with the threshold-based algorithm. We also conduct
a ten-hour pilot study to test its usability in real-life. The
result shows that our low-complexity algorithm can rule out
most fall-alike activities in daily life. However, using only
acceleration information, we have difficulty in distinguish
between falls and jumping onto bed or run-and-stop. One
possible improvement is that we can calculate the rough
height change estimate using the vertical acceleration. The
difference of height change may distinguish between falls onto
ground and jumping onto bed, or run-and-stop. Considering
its 90% fall detection accuracy,this algorithm can be applied
into wearable products. In theory, only one accelerometer is
needed for wearable products targeting fall detection using our
algorithm, which is a strong guarantee for the size and energy
consumption of products.
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