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Abstract—We develop a pre-treatment planning
method for optimum hepatic radiofrequency (RF) abla-
tion. In conventional methods, pre-treatment planning
is minimal and for a specific tumor size, it only in-
cludes reading pre-specified treatment length and input
voltage values from a look-up table that lists experi-
mentally obtained ablation parameters. Such planning,
in order to assure certain level of cell death, usually
results in more healthy cell damage than desired. Dif-
ferent than the conventional methods, here, we de-
velop a model-based pre-treatment optimal planning
framework. As an example, we use 1-D axisymmet-
ric tissue geometry and over this geometry, we solve
Pennes’ bioheat and Laplace equations to model the
RF heating. Using the solutions of these equations, we
define constrained nonlinear optimization problems to
achieve specific temperature profiles in certain areas
of the tissue. Results demonstrate that compared to
the conventional methods, our approach significantly
improves the healthy tissue preservation.

I. Introduction
For hepatic tumors, Radiofrequency (RF) ablation has

been a widely employed treatment alternative to surgical
resection [1], [2], [3], [4], [5], [6], [7]. When applied to a
tissue, alternating electrical current in the RF range (450-
500 kHz) causes temperature increase without neuromus-
cular excitation [8], [9], [7]. Depending on the size of the
tumor, current ablation strategy includes the application
of a constant voltage level over a predetermined treatment
duration (typically between 5 - 30 minutes) [10], [11].
To achieve a desired level of cell death, constant volt-

age strategy may result in an irreversible healthy tissue
damage. To circumvent this, different studies focused on
(1) finding an appropriate electrode voltage range [12],
[13], [14], (2) positioning of ablation probes [15], [16], [17],
[18], and (3) the effects of treatment duration on tissue
damage [19], [20], [12]. However, there is no systematic
way to control the amount of energy received by different
volumes of tissue; and, research into control of RF ablation
procedure is still very limited. For example, Haemmerich
et al. modeled a PI controller to keep the electrode tip
temperature at a target level (100◦ C) [21], but controlling

the temperature of other positions was not considered.
In our work, while manipulating the entire temperature
history and tissue damage level of certain positions in the
target tissue, we present a pre-operative treatment planning
based on multiple point constraint optimization.

II. RF Heating Model

A. Bioheat Equation

Heat transfer in tissue is governed by the bioheat equa-
tion [12],

ρc
∂T

∂t
= ∇ · (κ∇T ) + q −Qp (1)

where T is tissue temperature, ρ is mass density, c is heat
capacity, κ is thermal conductivity of the tissue. Internal
heat generation due to resistive heating and heat loss due
to blood perfusion are represented as a distributed source
q and sink Qp, respectively. Tissue heating in RF ablation
is a resistive heating process, modeled by the Joule heating
relationship [22], [23], [24], [12],

q = σ(∇V )2 (2)

where σ is electrical conductivity of the tissue, ∇ is
gradient operator. As frequency of the electrical potential
V is much faster than the characteristic time scale of heat
transfer, it can be obtained at steady state, by using,

∇ · (σ∇V ) = 0. (3)

Heat loss Qp due to blood perfusion is of the following
form [20],

Qp = hb(T − Tb) (4)

where hb is the convective heat transfer coefficient, Tb is
blood temperature. The convective heat transfer coeffi-
cient can be calculated as hb = ωbρbcb, where ρb and cb are
the mass density and specific heat of blood, respectively,
and ωb is perfusion coefficient [25].



B. 1D Axisymmetric Model

In this manuscript, to demonstrate the pre-treatment
optimization framework, we consider the 1D axisymmetric
geometry illustrated in Figure 1. In this geometry, the
temperature is a function of time and radial position
(T = T (r, t)). Inner and outer boundaries of the solution
domain are located at ri and ro where ri represents the
location of the electrode tip (ET) (rKZ , rPZ , and rH are
defined later in Section III).

Fig. 1: Axisymmetric cylindrical geometry

The electric potential at the electrode tip is specified as
V (ri) = Vi, and, electric potential at outer boundary is
zero, i.e. V (ro, t) = 0. Then, electrical potential variation
can be found as follows,

V (r) = Vi
ln( ri

ro
) ln( r

ro
). (5)

Considering the electrical potential calculated above,
the bioheat equation in polar coordinates becomes,

1
α

∂T

∂t
= 1
r

∂

∂r

(
r
∂T

∂r

)
− hb

κ
(T − Tb) + g

κ

1
r2 (6)

where g (= σ(Vi/ ln(ri/ro))2) represents energy input into
the system and α (= κ/ρc) is the thermal diffusivity.
Inner boundary of the solution domain is in temperature
equilibrium [13] as the thermal mass of the probe is
negligible compared to the surrounding tissue, while the
heat flux is negligible at the outer boundary [26]. These
conditions are expressed mathematically as follows,

∂T

∂r

∣∣∣∣
r=ri

= ∂T

∂r

∣∣∣∣
r=ro

= 0. (7)

In addition, the initial temperature distribution at time
t = 0 is specified as follows,

T (r, 0) = T (0)(r) = T (in)(r). (8)

The material properties are assumed to be constant
in order to get a closed form solution to the bioheat
equation (6) subjected to conditions (7) - (8).

Since equation (6) is a non-homogeneous linear partial
differential equation with homogeneous boundary and ini-
tial conditions, we use the eigenfunction expansion method

to obtain a solution [27]. Accordingly, we set the antici-
pated form of the solution to (6) as a series summation
of separable functions as follows,

T (r, t) =
∞∑
n=1

an(t) · φn(r) (9)

where φn(r) are eigenfunctions with the corresponding
eigenvalues λn. In order to find the eigenvalues and
eigenfunctions, we first solve the homogeneous problem
corresponding to (6). In this solution, we use the unknown
variable as U instead of T to differentiate the homogeneous
problem from the original non-homogeneous one as follows

1
α

∂U

∂t
= 1
r

∂

∂r

(
r
∂U

∂r

)
− hb

κ
U (10)

We observe that (10) is a partial differential equation
separable in time and space; therefore, we employ U(r, t)
= G(t) · φ(r) in (10) and obtain,

1
α
φ(r)∂G(t)

∂t
=
(
∂2φ(r)
∂r2 + 1

r

∂φ

∂r

)
G(t)− hb

κ
G(t)φ(r)

(11)

⇒ 1
α

1
G

∂G

∂t
= 1
φ

(
∂2φ

∂r2 + 1
r

∂φ

∂r
− hb

κ
φ

)
= −λ. (12)

First, rewriting (12) as a regular Sturm-Liouville eigen-
value problem, we obtain [27],

∂2φ

∂r2 + 1
r

∂φ

∂r
+
(
λ− hb

κ

)
φ = 0. (13)

Next, multiplying (13) with r2, we have

r2 ∂
2φ

∂r2 + r
∂φ

∂r
+
[(
λ− hb

κ

)
r2 − 0

]
φ = 0. (14)

Then, assigning z =
√
λ− hb

κ
r, (14) becomes

z2 ∂
2φ

∂z2 + z
∂φ

∂z
+ (z2 − 0)φ = 0 (15)

We observe that (15) is a zeroth-order Bessel’s equa-
tion [27]. Therefore, we consider the general solution form
for (15) as φ(r) = c1J0(λ′r) + c2Y0(λ′r), with λ′ =√
λ− hb

κ
. Then, following (7), we rewrite the correspond-

ing boundary conditions as, φ′(ri) = 0 and φ′(ro) = 0
which accordingly lead to

c1λ
′J1(λ′ri) + c2λ

′Y1(λ′ri) = 0
c1λ
′J1(λ′ro) + c2λ

′Y1(λ′ro) = 0 (16)

In order to obtain the eigenvalues, we calculate the
Wronskian of the system defined in (16),

W = (λ′)2 · J1(λ′ri) · Y1(λ′ro)− (λ′)2 · J1(λ′ro) · Y1(λ′ri).
(17)

Regarded as a function of λ, (17) has an infinite number
of roots, λn for n = 1, . . . ,∞, which are the eigenvalues of



the system. Accordingly, the corresponding eigenfunctions
are

φn(r) = J0(λ′nr)−
J1 (λ′nr0)
Y1 (λ′nr0)Y0 (λ′nr) (18)

for all n > 1 values. Note that φ1(r) = 1 is a special case
of the eigenfunctions.

Recall that we assume in (9) that T (r, t) =
∞∑
n=1

an(t) · φn(r). From (17) and (18), we obtain φn(r).
In the next step, we demonstrate how to compute an(t).
Using (9) in (12), we obtain the following relationships

∂T

∂t
=
∞∑
n=1

dan(t)
dt

φn(r)

∂2T

∂r2 + 1
r

∂T

∂r
− hb

κ
T = −

∞∑
n=1

an(t)φn(r)λn
(19)

Using (19) in (6), we write
∞∑
n=1

[
1
α

dan(t)
dt

+ λnan(t)
]
φn(r) = g

κ

1
r2 + hb

κ
Tb. (20)

Noting that φn is orthogonal to φm, we compute [27],

1
α

dan(t)
dt

+ λnan(t) =

∫ ro

ri

(
g

κ

1
r2 + hb

κ
Tb

)
φn(r)rdr∫ r1

r0

φ2
n(r)rdr

≡ qn

(21)
where qn is the generalized Fourier coefficients of the term(
g

κ

1
r2 + hb

κ
Tb

)
with respect to φn(r) [27].

Next, we solve (21), which is a linear non-homogeneous
first order ordinary differential equation, to obtain an(t)

eλnαt

[
dan(t)
dt

+ λnαan(t)
]

= d

dt

(
an(t)eλnαt

)
= qnαe

λnαt

(22)
where eλnαt is the integrating factor. Then integrating (22)
from 0 to t, we find

an(t)eλnαt − an(0) =
∫ t

0
qnαe

λnατdτ (23)

⇒ an(t) =
[
an(0)− qn

λn

]
e−λnαt + qn

λn
. (24)

In order to compute an(0), we apply the initial condition
T (r, 0) = T (in)(r) to (9),

∞∑
n=1

an(0)φn(r) = T (0)(r). (25)

Again recalling that φn and φm are orthogonal to each
other, an(0) is computed as [27]

an(0) =

∫ ro

ri

T (in)(r)φn(r)rdr∫ ro

ri

φ2
n(r)rdr

. (26)

Finally, using (17), (18), (24) and (26), we calculate
λn, an(t) and φn(r) and obtain the solution to the 1-D
axisymmetric problem as

T (r, t) =
∞∑
n=1

{
ε0ne
−λnαt + ξ0

n

(
1− e−λnαt

)}
φn(r) (27)

where ε0n =
∫ ro

ri
T (0)(r)φn(r)rdr∫ ro

ri
φ2
n(r)rdr

, ξ0
n =∫ ro

ri

(
g
κ

1
r2 + hb

κ Tb
)
φn(r)rdr

λn
∫ ro

ri
φ2
n(r)rdr

such that g (=

σ(Vi/ ln(ri/ro))2) and accordingly Vi are constant
throughout the ablation. In the rest of this section, we
demonstrate how to modify the solution in (27) to obtain
temperature variation when Vi is varied.
We next evaluate the continuous temperature variation

T (r, t) at discrete temporal and radial positions T
(k)
j ,

where j refers to a radial position on a discretized spatial
grid, and (k) refers to the kth time step. In this work, the
solution domain [ri, ro] is divided into N equally spaced
intervals of length ∆r = (ro − ri)/N . Transformation
r = ri + (j − 1)∆r for j = [1, N + 1] is used to map the
continuous and discrete domains. Similarly the duration
of treatment τ is divided into M equally spaced time
intervals, with the transformation t = (k − 1)∆t for
k = [1,M + 1], where ∆t = τ/M .
First, while solving for the consecutive time intervals,

from time step (k − 1) to (k), equation (27) can be
generalized for a general initial condition T (k−1)(r) from
time step (k − 1) as follows,

T (k)(r) =
∞∑
n=1

{
ε(k−1)(r)e−λnα∆t + ξ(k)

n

(
1− e−λnα∆t)}φn(r)

(28)

where ε(k−1)(r) =

∫ ro

ri

T (k−1)(r)φn(r)rdr∫ ro

ri

φ2
n(r)rdr

and ξ
(k)
n =

∫ ro

ri

(
g(k)

κ

1
r2 + hb

κ
Tb

)
φn(r)rdr

λn

∫ ro

ri

φ2
n(r)rdr

such that T (k)(r) is the

radial temperature profile at the end of the kth time
interval, and g(k) = σ

(
V

(k)
i / ln(ri/ro)

)2
with V (k)

i as the
input electrical potential between time steps k − 1 and k.
We assume V (k)

i is constant within each interval but can
change from one interval to another.
Note that when discretized in space, calculation of

temperature on the spatially discretized grid affects only
the first term on the right hand side of the equation (28)



(ε(k−1)(r)) as follows,

T
(k)
j = ξ

(k)
n

(
1− e−λnα∆t)φn(rj)+

∞∑
n=1

e−λnα∆tφn(rj)

[
∆r
2

N∑
l=1

(T (k−1)
l + T

(k−1)
l+1 )φn(rl)(rl)

]
∫ ro

ri

φ2
n(r)rdr

(29)
where rl = ri+(l− 1

2 )∆r, and trapezoidal rule is used to ap-
proximate the integral involving T (k−1)(r) = T

(k−1)
j [28].

III. Optimal Planning
In conventional RF treatments, a constant input voltage

is used for a predetermined duration to ablate a designated
“kill-zone”. While the goal in this work is not only to
guarantee a completely ablated “kill-zone”, but also to
preserve as much healthy tissue as possible.
The treatment domain is divided into three different

zones with key demarcation boundaries, as depicted in
Figure 1. We employ the Arrhenius index to define the
treatment domain partitions [18], [26], [20], [12], [29], [25],
[19].

Ω (T ) = ln c(0)
c(t) = F

∫ t

0
exp( −∆E

RT (t∗) )dt∗ (30)

where c(0) is the original concentration of living cells [30],
R (= 8.314 J/mol·K) is the universal gas constant [19],
F is the “frequency” coefficient and ∆E is the energy of
initiation of irreversible ablation reaction. Arrhenius index
represents the effect of temperature history at a given
position and thus has been shown to be more effective than
using temperature to monitor tissue damage [31], [32], [33],
[34], [16], [12], [29]. For liver tissue under RF current F
= 7.39 × 1039 s−1 and ∆E = 2.577 × 105 J/ mol [35].
Damage integral value Ω = 1 remarks a 63% probability
of cell death, whereas Ω = 4.6 refers to a 99% probability
of cell death. The significance of Ω = 1 has been reported
as the point at which tissue coagulation first occurs and
blood perfusion ceases[12], [20], [19]. In this work, Ω =
1 and Ω = 4.6 are used to determine the boundaries of
healthy and dead (kill zone) tissue, respectively.

Accordingly, in Figure 1 the kill zone spans the range
rET ≤ r ≤ rKZ . The kill-zone radius rKZ is greater
than the tumor radius, including a safety margin. The
heat affected zone is located in the range rKZ ≤ r ≤ rH ,
where rH indicates the healthy zone boundary (Ω = 1).
The healthy zone lies in the range rH ≤ r ≤ ro where
Ω < 1. In addition, we define a preservation zone boundary
rPZ where an optimization constraint is assigned. This
boundary is set to be several millimeters larger than
rKZ . Note that rPZ is used as a variable to improve the
treatment outcome as described below.

Following the partitioning in Figure 1, we desire to
achieve a specific temperature value in a specific location
of the target geometry while also minimizing the input
voltage to avoid excessive tissue heating. We consider a

cost function inspired by linear quadratic regulator theory
[36] as follows,

J(V) =
M+1∑
k=1
||T (k)

KZ ||
2. (31)

where V =
[
V

(1)
i , . . . , V

(M)
i

]T
with V

(k)
i as the input

voltage at the kth time step, and T kKZ is the temperature
at the kill-zone boundary (at rKZ) and it is computed
using (29).
To avoid tissue charring and minimize thermal injury

in healthy tissue while guaranteeing total ablation of the
kill zone, we define the following three linear constraints
at rET , rPZ and rKZ , respectively.

C1 : T (rET , t) ≤ T ∗ET , for t ≤ τ
C2 : T (rPZ , t) ≤ T ∗PZ , for t ≤ τ
C3 : T (rKZ , t) ≥ T ∗(rKZ , t), for t ≤ τ

(32)

where the constraints T ∗ET and T ∗PZ are temperature
upper bounds at rET and rPZ , respectively. T ∗ET value
is selected to prevent tissue charring; T ∗PZ is chosen to
preserve healthy tissue. In the third constraint, the tis-
sue temperature at the kill zone boundary T (rKZ , t) is
constrained to be above a time-dependent temperature
profile T ∗(rKZ , t) for the entire treatment duration. These
temperature constraints are chosen such that at the end
of τ , Ω(rKZ) is greater than 4.6.
Note that from (28) and (29), we observe that (31) is

a quadratic function of V. Therefore, together with the
linear constraints defined in (32), the optimal planning is
formulated as a convex quadratic constrained optimization
problem. A feasible solution to this problem will be glob-
ally optimal [37]. We use MATLAB’s optimization toolbox
to solve this convex problem.

IV. Results and Discussion

Using the 1D axisymmetric geometry, we compare the
healthy tissue preservation properties of the proposed pre-
treatment and conventional plans. In our simulations, we
use the geometry partitioning and optimization param-
eters and material properties as listed in Table I. For
simplification, we assume that the material properties are
uniform and constant in our simulations. Temperature
dependent material properties is the subject of our future
work.
To evaluate the performance we evaluate the volume

(VH = π(r2
o − r2

H)) of remaining healthy tissue at the end
of treatment, where rH is the tissue radius where Ω = 1
at the end of treatment. Volume of retained healthy tissue
with optimization is compare to that obtained with the
conventional treatment by using the normalized variable,

∆V̄ =
(rcH)2 −

(
roptH

)2
r2
KZ

× 100 (33)



where rcH is the radius of the healthy region obtained by
using the conventional treatment protocol. The conven-
tional treatment constitutes of a constant voltage applied
for a fixed duration. In this case for the parameters given in
Table I we find that 20.68 Volts is required to reach Ω = 4.6
at the kill zone boundary (rKZ = 5 mm) in 1000 seconds.
The resulting healthy zone is found to lie in r ≥ rH (=
9.4 mm) where Ω ≤ 1, at t ≥ τ .

Using a step-wise increasing temperature constraint
T ∗(rKZ , t) as shown in Figure 2b in C3 of (32), we
calculate the optimal voltage sequence (treatment plan),
as also shown in Figure 2b. We observe that the optimal
voltage sequence calculated by the optimizer closely fol-
lows the step variation with the exception that voltage
spikes occur between the steps. Resulting temperature
variation (Figure 2a) also reflects the temperature spikes,
but only near the electrode.

Note that the second constraint (C2) can be modified
to influence the treatment outcome for fixed C1 and
C3. In particular, different C2 values change the volume
of the preserved tissue. Table II shows the normalized
change in healthy tissue volume ∆V̄ . Recall that rPZ and
TPZ are the preservation zone boundary and temperature
upperbound at that boundary respectively. Not that the
rPZ , T ∗PZ combinations for which an optimized solution
was not feasible are left unmarked. For the parameters
that give rise to feasible solutions, we observe around %50
increase in healthy tissue preservation. Due to computa-
tional simplifications the spatial discretization is chosen
to be sparse and the TPZ and rPZ are chosen in small
ranges. These choices gave rise to identical normalized
improvement.

TABLE I: Parameters and material properties adopted in
the simulated conventional treatments and optimization cases.
Material properties are assumed to be uniform and constant in
this work

ro Domain size (mm) 60
rET Electrode tip radius (mm) 1
rKZ Kill-zone radius (mm) 5
rP Z Preservation-zone radius (mm) 7 - 13
τ Duration of treatment (s) 1000
Tb Body temperature (◦ C) 37
T ∗

P Z Preservation-zone boundary temperature limit (◦ C) 40 - 43
T ∗

ET Electrode tip temperature limit (◦C) 80
N Number of spatial intervals 200
M Number of temporal intervals 60
κ Thermal conductivity (w/K·m) 0.502
σ Electric conductivity (S/m) 0.148
ρ Mass density (kg/m3) 1060
ρb Mass density of blood (kg/m3) 1000
c Specific heat of tissue (J/kg·C) 3600
cb Specific heat of blood (kg/m3) 4180
ωb Blood perfusion coefficient (s−1) 6.4×10−3

ε Blood perfusion weighing factor [25] 0.6

V. Summary and Conclusion
This work presents the first attempt to optimize input

voltage variation as a pre-operative planning sequence
for hepatic radiofrequency ablation. Unlike previous stud-
ies which used constant voltage or simple electrode-tip
temperature controlled model, this work demonstrated
the possibility of controlling certain position’s historical

(a) Temperature surface of A1
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Fig. 2: Resulting temperature surface and input voltage vari-
ation plots of a sample case. (a) Temperature variation as
a function of time and location and (b) optimized voltage
sequence. The following parameters were used rKZ = 5 mm,
rP Z = 12 mm, T ∗

P Z = 41.6 ◦C along with those listed in Table I

temperature profile and resulting local tissue damage level.
Pre-operational input sequence optimization was imple-
mented to achieve desirable RF ablation strategy which
could guarantee a complete ablation of the designated “kill
zone” while retaining a considerable amount of healthy
tissue thermal-injury free. The methods outlined here can
be expanded to 3D realistic scenarios with relative ease. It
is expected that by incorporating an optimization method
the RF ablation treatments can become more effective.
The methodology used in this work would be applicable
to cryo treatments of tumors with relative minor changes.
The current work assumes that material properties are
constant and uniform throughout the solution domain.
Future work will relax this assumption. Moreover, future
work will focus on phantom studies to validate the method
on more complex geometries.
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