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Abstract—Detection of subtle changes in cognitive states (e.g., 
cognitive overload) or epistemic state of mind remains a 
challenge. As they typically lack visible expressions, indirect 
methods like analysis of facial expressions are ineffective at best. 
Towards solving such problem, we present a statistical approach 
to predict cognitive load from single trial electrophysiological 
recordings of brain activity (i.e., EEG). We evaluated the utility 
of two commonly used sets of features, namely, wavelet entropy 
and band-specific power (theta, alpha, and beta) to predict levels 
of cognitive load. We show that performance of the model (i.e., 
support vector machine) could be improved by feature fusion 
(such as wavelet entropy and spectral power features together) 
and also integrating nonlinear representations learned through 
deep belief networks. Our results demonstrate predictions of 
cognitive load across four different levels with an overall 
accuracy of 92% during execution of a memory task.  
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I.  INTRODUCTION 
 

Humans are naturally capable of understanding other 
people’s emotions and feelings from facial and behavioral 
cues. While computational algorithms have made remarkable 
progress in predicting emotions from facial expressions [1], 
[2], their ability in prediction of cognitive states (e.g., 
confusion) and epistemic states of mind remains a challenge. 
On the other hand, much progress has been made in estimating 
cognitive states from physiological markers (e.g., pupil 
dilation, galvanic skin response, heartbeat rate, and brain 
activity) [3]. Notably, analyzing brain signals (“brain 
decoding”) for cognitive load prediction has received much 
attention recently [4]–[6]. Gevins et al, [29] used spectral band 
features to distinguish between three levels of working memory 
load (low, medium and high). While they reported an accuracy 
of 95% when discriminating between low and high load levels, 
classification performance decreased greatly when comparing 
adjacent load levels (e.g., med-high ~80%). On the other hand, 
more recently Zarjam et al. [6], adopted a spectral feature 
called wavelet entropy (WE) for the EEG signals to classify 
seven cognitive load states during an arithmetic task achieving 
an impressive accuracy of 98%. However, no comparison 
between WE and spectral power features have been conducted 

in the literature to evaluate the prediction power derived from 
each feature set and whether or not complementary information 
exists among them. 

Computing or predicting changes in cognitive states using 
single trial EEG is critical for next generation brain-machine 
interfaces. Demand for monitoring of mental states (e.g., 
cognitive overload) is important in various fields including the 
design and implementation of cognitively informed software 
applications, and diagnosis of psychological disorders [7], [8]. 
Based on the theory of cognitive load (CL), mental load is 
directly related to individual’s working memory (WM) 
capacity [9]. Since human WM has a limited capacity, 
increasing the cognitive demand beyond this limit will result in 
cognitive overload, a state of decreased task performance as 
well as lower learning rates [10].  

A plethora of neuroimaging modalities are available to 
monitor brain activity in response to cognitive tasks (e.g., 
fMRI, MEG, EEG). Electroencephalogram is preferred in 
many applications because of its portability, lower cost, and 
ease of use compared to other modalities. Different temporal 
and spectral characteristics of EEG are often used as 
representative features of EEG that co-vary with cognitive load 
[11]. Among these, band-specific power values from the EEG’s 
spectrum have proved to be robust markers in many 
classification applications. Selection of multiple frequency 
bands can quickly lead to very high dimensional feature 
vectors leading to curse of dimensionality and poor 
classification performance. Naturally, more abstract signal 
representations are always desired to reduce the feature space 
dimension. Wavelet entropy has recently been proposed as an 
abstract representation of the spectral activity which can be 
used for a more compact spectral feature set [12]. Studies 
investigating neural activity within the WM network have 
largely revealed several cortical regions active in response to 
WM operations (see [13] for a review). In brief, activity in 
prefrontal cortex and precuneus are mostly observed during a 
wide range of cognitive and memory tasks. These regions are 
part of the fronto-parietal pathway, which arguably forms the 
core of memory-related processing in the brain [14], [15].  

Here, we built a statistical model to predict level of 
cognitive load from spectral features of single trial EEG. In 
particular, we explored the classification performance of a 



support vector machine with band-power and wavelet-entropy 
feature sets in predicting levels of cognitive load and to detect 
cognitive overload during a WM task. Our key contributions 
are the selection and fusion of different features to develop a 
model that can predict the cognitive load based on single trials 
of a WM task.Critically, our model can distinguish between 
multiple loads which covered the range within and exceeding 
the normal range of cognitive demand. In particular, detecting 
the overload condition is a difficult problem to solve because 
overload could occur at different load levels depending on the 
individual’s WM capacity. Moreover, in order to find compact 
representations of EEG data, we adopted a feature selection 
approach using random forest and furthermore a nonlinear 
transformation using deep belief network for nonlinear 
mapping of feature space into lower dimensions.  

II. METHODS 

A. Data recording and preprocessing 
Fifteen graduate students (7 male) voluntarily participated 

in the experiment. Participants completed 240 trials of a visual 
variant of Sternberg working memory paradigm. The task 
consisted of memorizing a set of English characters (SET) for a 
brief time (3 seconds) and respond whether a randomly 
presented test character (TEST) was among the memorized set 
or not. To induce various levels of cognitive load, the number 
of characters presented during each repetition of the task was 
varied between 2, 4, 6, or 8 items. The load level was randomly 
selected for each trial with the restriction that each ¼ of trials 
would be dedicated to each load level (n = 60). The 
individual’s WM capacity K was computed as K = S(H-F), 
where S is the number of characters in the stimulus, H is the hit 
rate and F is the false alarm rate [16]. 

The electroencephalogram (EEG) was recorded throughout 
the task using a 64 channel electrode cap (Neuroscan Quik-
Cap). Electrodes were placed on the standard 10-10 locations. 
In addition, two bipolar electrodes were also placed on the 
outer canthi of the eyes and the superior and inferior orbit to 
detect ocular artifacts. Electrode impedance was kept below 
5kΩ throughout the data recording. EEG was recorded in 
reference to an electrode placed ~1 cm posterior to Cz at a 
sampling rate of 500 Hz and re-referenced offline to the 
common average reference.  

Portions of the continuous EEG containing ocular artifacts 
were cleaned using principal component analysis [17]. Data 
was subsequently down-sampled to 250 Hz for analysis. EEGs 
were band-pass filtered with a zero-phase FIR filter of order 
500. Data was then epoched into segments of 5500 ms 
spanning the interval from two seconds prior to SET-onset to 
the TEST onset.   

B. EEG Features 
1) Band Power 

In studies of EEG, the frequency range has conventionally 
been divided into multiple sub-bands (e.g., delta, alpha, beta). 
Neural oscillatory responses within each of these sub-bands 
have found to be correlated with various neural mechanisms 
[11], [18]. Fast Fourier transform (FFT) was employed to 

extract the power spectra for each EEG signal. For each 
electrode and trial, the time span from SET presentation to 
TEST presentation was selected. This time window contained 
the complete encoding and maintenance stages of WM 
operation. Mean spectral power (MSP) within theta (4-7 Hz), 
alpha (8-13 Hz) and beta (14-30 Hz) bands were extracted by 
averaging the FFT magnitudes over their corresponding 
frequency bands. These frequency bands were selected in 
relation to the numerous evidence of their role in various 
cognitive functions [27], [28]. to the aggregated feature vector 
consisted of 192 features (64 electrodes x 3 sub-bands).   

2) Wavelet Entropy 

Wavelet entropy (WE) provides information about the 
degree of order existing in a multi-frequency signal [12]. In this 
framework, periodic signals with a narrow band spectrum are 
more ordered and therefore would gain lower WE values 
compared to more complex and unpredictable ones. In the 
context of cognitive load measurement, this would be of 
particular interest since higher load levels enhance the power in 
higher frequency bands while reducing the lower bands power 
[19]. In order to compute WE, we first find the discrete wavelet 
transform of the signal with N levels.  
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The relative WE is then computed through normalizing the 
sub-band energy values by the total energy. 
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Since the resulting normalized energy values are bounded 
between zero and one they can be treated as a probability 
distribution. Wavelet entropy is defined as the entropy value of 
the distribution of normalized energy values. 
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We computed the wavelet entropy of each EEG electrode 
signal for the duration of each trial following the presentation 
of the stimulus SET. 

C. Feature Selection with Random Forest 
Performance of a computational model can be improved by 

choosing compact features that are maximally relevant with 
minimum redundancy to the desired categories. In many cases, 



high dimensional features usually lead to degradation of 
classification performance due to the curse-of-dimensionality. 
In addition, large number of irrelevant features may lead to 
poor generalization of the model and incur computational cost. 
It is always desirable to generate compact representations of 
data both for storage and computational cost optimization. In 
order to reduce the size of feature vector, we employed the 
random forest algorithm to rank the best features for the 
classification task. 

Random forest [20] is an ensemble method, which consists 
of an array of random trees grown independently. Random 
forests can handle large number of features without deletion 
and run efficiently on large datasets. Each tree in the ensemble 
is grown using data that is randomly sampled from the training 
set with replacement. In addition, only a subset of features is 
used to construct each tree that is also randomly selected from 
the complete set of features. For each tree, one-third of data is 
kept out of the sample (out-of-bag) and used to obtain an 
unbiased estimate of classification error of the tree. Random 
forest uses a permutation process to measure the importance of 
each variable (feature) in categorizing data samples and 
subsequently to rank the features. An ensemble of 100 decision 
trees was constructed to rank the 192 features in this study and 
to select the top 64 features (equal to the number of electrodes 
and maximum number of wavelet entropy features). To 
quantify the variable importance we used the difference 
between the number of raised margins and the number of 
lowered margins if the values of that variable were permuted 
across the out-of-bag observations. This measure was 
computed for every tree and then averaged over the entire 
ensemble and divided by its standard deviation.  

D. Classification with support vector machine 
Support vector machine (SVM) [21] is a kernel based 

classification/regression method widely used in diverse 
applications. Among various approaches to multivariate 
classification, SVM has been shown to be a practical and 
robust method for brain decoding [22]. SVM projects the data 
into a higher dimensional space through a kernel function and 
finds a decision boundary with maximal margin.. A common 
nonlinear kernel used in SVM is the radial basis function 
(RBF). Because of the inherent nonlinearity existing in the 
RBF kernel, it can handle the nonlinear relationship between 
class labels and attributes. SVM maximizes the distance 
between all data points and the decision boundary in the 
transformed space (kernel space) and therefore is a large-
margin classifier. For a D dimensional feature vector and N 
number of data points, the solution coefficients are found by 
solving a standard quadratic program in N+D+1 variables 
subject to O(N) constraints. SVM provides a sparse solution by 
considering only a subset of points that are either incorrectly 
classified or are classified correctly but are on or inside the 
margin. 

All features were z-scores normalized. A SVM with RBF 
kernel was then used to predict the load level from single-trials 
of the EEG. SVM hyper parameters consisting of 
regularization penalty parameter (C) and inverse of RBF 
kernel’s standard deviation (γ =1/σ ) were selected by grid-
search through 5 fold cross-validation (C = {0.01, 0.1, 1, 10, 

100}, γ = {0.1, 0.2, …, 1, 2, …, 10}). The F-score was used to 
determine the best hyper-parameters. Finally, results were 
evaluated using a 10-fold stratified cross validation approach 
performed on the complete set of trials. The reported number 
of support vectors was computed by finding the average of all 
folds.  

E. Deep Belief Network 
To compare performance, we also trained a deep belief 

network (DBN) to predict the load levels from spectral 
features. DBN has similar structure to multi-layer perceptron 
(MLP) with the main difference in the training approach. Deep 
belief networks find lower dimension representations of the 
data while iteratively optimize the weights to decrease the 
prediction error. Parameters of each layer of DBN are pre-
trained greedily by treating it as a restricted Boltzmann 
machine (RBM). This improves learning by setting the initial 
parameters to more realistic values overcoming the difficulties 
to train deep neural networks [23]. RBM consists of two layers 
of stochastic hidden units with only cross-layer connections 
(i.e., no within layer connections). In spirit, RBM essentially 
models the distribution of its input and learns this relation by 
tuning its weights in order to reduce the difference of the true 
(from training data) and estimated (from model) joint 
probability between visible (first layer) and hidden (second 
layer) units. A detailed guide on training RBM can be found in 
[24]. 

The network we used here consisted of one Gaussian-
Binary RBM and two Binary RBM layers (128, 128, 64) and a 
final softmax layer which mapped the data representations of 
the last RBM layer to a multinomial distribution (or binomial 
for the overload prediction case) for classification. The 
activation function of hidden layers was selected as sigmoid 
function. The network was pre-trained using a greedy layer-by-
layer unsupervised method [25] on the standardized training 
data. We used batch stochastic gradient descent (batches of size 
10 samples) with L1 regularization to reduce the overfitting 
during the fine-tuning stage. The network consisted of 49,924 
parameters (with 192 MSP features) and was implemented in 
Theano [30]. 

III. RESULTS 
Performances for different classification approaches are 

presented in the Table-1. We report the average accuracy and 
F-score [26] for all classes. Percent of support vectors are 
tabulated in each case. Accuracy demonstrates the achieved 
performance in successfully predicting the cognitive load 
whereas, number of support vectors provides a measure of 
overlap between the various classes around the separating 
hyperplane in the transformed space derived from SVM’s 
kernel function. Naturally, having higher accuracy and lower 
number of support vectors are desired but this will usually 
remain as a trade-off between the prediction error on training 
data and the generalization on test data. We predicted WM load 
levels using mean spectral power (MSP), wavelet entropy 
(WE), joint MSP and WE (MSPWE), random forest top 
features of MSP (MSP64), and random forest top features of 
joint MSP and WE (MSPWE64). The dataset consisted of 2670 
trials of the WM task collected from 15 subjects. Table-1 



summarizes the classification results for various approaches of 
features/classifiers for four levels of cognitive load. 

TABLE-1 - PERFORMANCE FOR PREDICTING COGNITIVE LOAD VIA 
DIFFERENT CLASSIFICATION APPROACHES. CHANCE LEVEL PRECISION 

EQUALS 28%. SV = SUPPORT VECTORS. 

Approach Ratio of SV 
(%) Accuracy (%) F-

score 
MSP+SVM 31 90.60 0.91 
WE+SVM 62 88.17 0.88 

MSP64+SVM 30 90.26 0.90 
MSP+DBN - 90.35 0.90 

MSPWE+SVM 44 92.13 0.92 
MSPWE64+SVM 37 91.16 0.91 

MSPWE+DBN - 90.73 0.91 

 The best performance across all approaches was observed 
using the joint WE and MSP feature sets and RBF SVM 
classifier. While WE features resulted in worst performance 
across all approaches, considering them jointly with MSP 
features boosted the accuracy by ~%2. Classification using 
lower dimension representations (¼ of all features) still 
performed comparably well, lagging by 1% behind the best 
performing metrics (MSPWE64+SVM). Interestingly, training 
SVM with representations extracted from the top layer of DBN 
gave almost equal performance to MSPWE+SVM (F-
score=0.92) proving DBN as an efficient method for finding 
lower dimension data representations. The confusion matrix for 
the MSPWE+SVM classifier is shown in Fig. 1. Most errors 
originated from misclassification between lower load levels 
while the higher load levels are relatively easier to predict. 
Specially the lowest load level (set size=2) is mistaken for all 
three other loads which could be an indication of more signal 
variation across trials and individuals for the lower loads. 

 
Fig. 1 – Confusion matrix for the best performing classifier 

(MSPWE+SVM) 

Subsequently, we used similar models to detect the WM 
overload from single trial EEG. Overload condition occurs 
when the induced load level (i.e. number of characters in SET) 
exceeds the individual’s WM capacity. Here, trials with load 
level greater than the individual’s behavioral WM capacity 
were considered as overloaded condition. Table-2 summarizes 

the results derived from various approaches. MSP+DBN and 
WE+SVM performed best and worst respectively. 
Interestingly, adding WE features when differentiating between 
normal load versus overload did very little in improving the 
results and slightly degraded the performance of DBN. 

TABLE-2 – DETECTION PERFORMANCE FOR COGNITIVE OVERLOAD AND 
DIFFERENT FEATURE SETS. SV = SUPPORT VECTORS. 

Feature set Ratio of 
SV (%) Accuracy F-score 

MSP+SVM 26 88.80 0.90 
WE+SVM 48 80.80 0.83 

MSP64+SVM 32 87.12 0.88 
MSP+DBN - 89.46 0.91 

MSPWE+SVM 22 89.14 0.90 
MSPWE64+SVM 30 88.16 0.90 

MSPWE+DBN - 88.78 0.90 
 

 
Fig. 2 - Topographic maps of feature importance for theta (left), alpha 

(middle), beta (right) differentiating between normal and overload conditions. 
Warmer colors indicate lower rank of the corresponding electrode in the 

specified frequency band. 

Finally, we ranked the spatial and spectral features of EEG 
based on their prediction power using the random forest 
method. In order to investigate the spatial and spectral mapping 
of our features and how they relate to prediction power, we 
mapped each feature’s ranks for the three explored frequency 
bands over the electrode locations on the scalp. These maps are 
demonstrated in Fig. 2. Features with lower ranks contain more 
information regarding the discrimination of various load 
conditions. Qualitatively, the frontal regions were ranked lower 
in all three frequency bands; central and parietal electrodes 
were mostly informative in the alpha frequency band.  

IV. DISCUSSION 
We adopted a machine learning approach to develop a 

cognitive load model from EEG data with a high degree of 
accuracy (> 92 %). The key contributions were to use existing 
techniques to develop model that can predict the outcome 
based on a single trial of a WM task. Moreover, we fused the 
two common feature sets in EEG classification studies (spectral 
power and wavelet entropy) to improve the prediction power of 
the model. We evaluated the classification performance of 
these feature sets on single trial EEG recordings from a 
challenging working memory experiment. While the SVM 
classifier generally performed better in both classification 
problems, nevertheless, we found evidence of improved 
accuracy when considering both features together. In addition, 
we performed feature selection using random forest to compute 



the top features and to identify the underlying cortical networks 
within each frequency band. In contrast to the usual approach 
of finding important regions with respect to the task (uni-
variate power tests), random forest ranks the features (cortical 
regions) in a semi-multivariate approach. This is done through 
permuting the values of a single variable in out-of-bag set and 
quantifying its effect on correct classification by all the trees in 
the forest [20]. Spatial distribution of spectral features over 
cortical regions including frontal theta and parietal alpha bands 
were largely in line with findings from other neural spectral 
studies [27], [28]. The overlapping map between the 
unsupervised computational approach and experimentally 
discovered spatial/spectral characteristics of cortical regions 
suggests the applicability of such multivariable approach to 
explore the space of potential relationships between brain and 
behavior. Moreover, our derived model could distinguish 
between the overload and normal cognitive load states of 
individuals. This is a critical problem since the cognitive 
overload condition occurs at different load levels for each 
individual, which makes this distinction particularly sensitive 
to individual differences.  

Finally, we showed that using nonlinear representation 
learning methods like DBN to transform the MSP features into 
a compact set of features, could generate an optimally 
predictive set of features of desired size. This is a particularly 
interesting approach which can further be extended to compare 
with other decomposition methods like principal component 
analysis, independent component analysis, and non-negative 
matrix factorization.  
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