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Abstract— We have previously published a full report [25] 

comparing the performance of three automated electromyogram 

(EMG) decomposition algorithms. In our prior report, the 

primary measure of decomposition difficulty/challenge for each 

data record was the “Decomposability Index” of Florestal et al. 

[3]. This conference paper is intended to augment our prior work 

by providing companion results when the measure of difficulty is 

the motor unit signal-to-noise ratio (SNRMU) — a measure that is 

commonly used in the literature. Thus, we analyzed experimental 

and simulated data to assess the agreement and accuracy, as a 

function of SNRMU, of three publicly available decomposition 

algorithms—EMGlab [1] (single channel data only), Fuzzy 

Expert [2] and Montreal [3]. Data consisted of quadrifilar needle 

EMGs from the tibialis anterior of 12 subjects at 10%, 20% and 

50% maximum voluntary contraction (MVC); single channel 

needle EMGs from the biceps brachii of 10 control subjects 

during contractions just above threshold; and matched simulated 

data. Performance vs. SNRMU was assessed via agreement 

between pairs of algorithms for experimental data and accuracy 

with respect to the known decomposition for simulated data. For 

experimental data, RMS errors between the achieved agreement 

and those predicted by an exponential model as a function of 

SNRMU ranged from 8.4% to 19.2%. For the simulations, RMS 

errors between achieved accuracy and those predicted by the 

SNRMU exponential model ranged from 3.7% to 14.7%. 

Agreement/accuracy was strongly related to SNRMU. 

Keywords— Electromyogram (EMG), motor units, 

decomposition, intramuscular EMG, biomedical signal analysis. 

 

I. INTRODUCTION 

Indwelling electromyogram (EMG) recordings are 
decomposed by separating the interference pattern into its 
constituent motor unit action potential trains (MUAPTs). 
Doing so permits the evaluation and study of individual motor 
unit (MU) firing patterns and action potential shapes, which is 
useful in a wide range of clinical and scientific studies (for 

reviews, see [4]–[6]). In most decomposition schemes, an 
automated algorithm detects and clusters each MUAP firing, 
typically with expert manual editing performed thereafter. 
Signal processing methods for automated decomposition were 
pioneered by DeLuca and colleagues [7], [8]; with numerous 
variations and alternative approaches proposed and studied 
thereafter [2], [4], [9]–[17]. 

Quantitative performance evaluation of automated 
decomposition algorithms has been conducted in a few 
manners [18]. First, reference annotations have been produced 
via manual expert editing of experimental data [2], [4], [12], 
[13], [17]. This technique is extremely time consuming (e.g., 
one hour per second of data [2]) and its true accuracy can be 
difficult to assess. Yet, the use of experimental data 
guarantees signal conditions representative of actual use. 
Second, EMGs can be simulated [8], [9], [11]–[13], [15], [17]. 
In this case, the true annotations are known. But, even highly 
detailed simulators produce data that cannot replicate all of the 
complexities of an experimental signal. Third, a few studies 
have recorded EMGs from multiple indwelling needles, 
comparing the decompositions of MUs detected by more than 
one electrode [4], [19]–[21]. Agreement in their firing times is 
strong evidence of accurate detection and classification. 
Recently, studies have compared decomposition results 
between EMG simultaneously acquired from indwelling 
electrodes and surface EMG arrays [22]–[24]. Overall, a 
combination of evidence from experimental and simulated 
data is typically used to evaluate an algorithm, as each 
evaluation technique exhibits strengths and weaknesses. 

For all automated algorithms, it is well established that 
performance depends on the characteristics of the signal being 
analyzed. Relative decomposition accuracy is known to 
decrease when: more spikes occur per second, MUAPs from 
distinct trains exhibit similar shapes, the signal-to-noise ratio 
(SNR) lowers, MUAP shapes change over time and/or firing 
times are irregular [4]. Florestal et al. [3] attempted to capture 



these signal characteristics in their Decomposability Index 
(DI), defined as the minimum RMS difference between the 
given MUAP template and each other MUAP template (or the 
baseline), divided by the RMS value of the entire channel. 
This measure takes into account both the size and the 
distinguishability of the MUAPs. 

In our prior full report [25], we contrasted the performance 
of three automated algorithms [1]–[3] that are publicly 
available for use in the MATLAB environment, with DI as our 
primary measure of the difficulty/challenge expected from 
each recording. Since algorithm performance varies depending 
on the data set analyzed, the same data were presented to each 
algorithm. We augmented the experimental data with data 
created by a publicly available EMG simulator [26], providing 
a more comprehensive evaluation. 

In this conference publication, we augment our prior work 
by presenting complimentary results when the measure of data 
set difficulty/challenge is the SNR of a MU (SNRMU). Distinct 
from the DI, the SNRMU is sensitive only to the amplitude of a 
MUAP, relative to the noise floor. This difficulty measure is 
more traditional than the DI and arguably simpler to 
understand. Thus, we present a companion cross-comparison 
of the performance of the three decomposition algorithms, as a 
function of the SNRMU. Readers are advised to review our prior 
full report [25], which contains complete project methods, etc. 

 

II. METHODS 

A. Experimental Data 

Portions of experimental data from two prior studies were 
reanalyzed, and simulated data were generated. No new 
subject data were collected. The data reanalysis was approved 
by the WPI Institutional Review Board. The experimental data 
spanned a range of MVC levels as well as laboratory and 
clinical data collection settings, to provide data with a range of 
challenges to decomposition algorithms. 

Three-channel quadrifilar needle EMGs had been acquired 
from the dominant leg of seven young (three male, four 
female; aged 18–30 years) and five elderly (two male, three 
female; aged 65 years or older) healthy subjects at the 
University of Massachusetts [25]. Briefly, the skin over the 
tibialis anterior (TA) muscle was cleaned with rubbing alcohol 
and a 27-gauge four-wire quadrifilar needle electrode was 
inserted into the belly of the TA muscle, avoiding the 
innervation zone. Four 50-µm diameter platinum-iridium 
wires terminating at a side port 7.5 mm from the tip of the 
electrode comprised the recording surfaces [27]. The four 
wires in this electrode were arranged in a square array with 
approximately 200 µm on each side. The signals detected with 
this needle were connected to three differential amplifiers 
(1012 Ω input resistance; 25 pA bias current), bandpass filtered 
from 1,000–10,000 Hz, and sampled at an effective rate of 
51,200 Hz (16-bit resolution). Following electrode insertion, 
subjects performed 30s duration constant-force contractions at 
10%, 20% and 50% MVC, with target force levels displayed 
on a video monitor. A rest period of three minutes was 
provided between contractions to prevent fatigue. One, 5 s 
segment during the constant-force portion of each recording 

was analyzed. Thus, 36 recordings of 5 s duration each were 
used (12 subjects x 3 levels of contraction). 

Single channel needle EMGs were reanalyzed from ten 
control subjects (6 males, 4 females; aged 21–37 years) in the 
publicly-available “N2001” database of Nikolic [28]. Of the 
available recordings within the database, recordings exhibiting 
a low background noise level (assessed visually) were 
selected. Recordings were acquired from the biceps brachii 
muscles during low level (just above threshold), constant-
force contractions using a concentric needle electrode in 
accordance with standard clinical recording procedures. The 
signals were bandpass filtered between 2–10,000 Hz and 
sampled at 23,437.5 Hz with 16 bit resolution. Ten 5 s 
recordings (10 subjects x one recording/subject) were used for 
analysis. 

For each signal, a “Spike Rate” measure was computed, 
expressing the number of MUAP firings per second. Within 
the analyzed 5 s segment of each recording, the number of 
pulses exceeding the background noise was manually counted. 
Spikes of duration greater than 3 ms, representing 
superimpositions, were counted as two pulses. Those with 
duration greater than 6 ms were counted as three pulses, etc. 
This approach accentuates the influence of longer duration 
spikes (which are, presumably, more difficult to decompose) 
and causes the Spike Rate to be larger than the rate that would 
be derived by using the number of events found by the 
detection stage of a classical decomposition algorithm. For 
multiple-channel data, all three channels were simultaneously 
viewed and a pulse was counted if it was discernible from the 
background in any channel. The Spike Rate measure was 
expressed in pulses per second (pps). Spike Rate measures 
from the experimental data were used to guide generation of 
the simulated data. 

 

B. Simulated Data 

Constant-force, quadrifilar and single channel data were 
simulated using the publicly-available needle EMG simulator 
of Hamilton-Wright and Stashuk [26]. The resulting signals 
closely resembled those acquired experimentally. The 
simulator parameters were selected to model the physical 
layout of the TA muscle, MU firing patterns, action potential 
propagation and type of EMG electrode. To emulate 
quadrifilar recordings, four noise-free monopolar tip 
electrodes (50 µm diameter) were simultaneously simulated in 
a square array configuration at 200 µm distances. This 
configuration mimics a quadrifilar needle. The three 
differential voltages were then computed offline in MATLAB 
and white Gaussian noise was added to give a SNR of 20 dB. 
For each experimental contraction level to be simulated, trial 
and error was used to determine the contraction level 
parameter input value of the simulator software such that the 
average Spike Rate of the simulated data matched the average 
Spike Rate of the corresponding experimental data. Five-
second constant-force recording segments were created at 
force levels representing 10%, 20% and 50% MVC. Each 
simulated condition was iterated 12 times, providing 12 
realizations, to give the same number of trials as with the 
quadrifilar experimental data. The true time instances and 



identities of each MUAP firing (i.e., MUAP annotations), 
which are fully known in simulated data, were recorded along 
with the simulated signals (sampled at 31,250 Hz, 16-bit 
resolution). To emulate healthy (control) single channel 
recordings, one 10 mm concentric electrode was simulated 
and white Gaussian noise was added to give a SNR of 20 dB. 
The Spike Rate of these simulated data was matched to the 
average Spike Rate of the single channel needle (N2001) data 
of the control subjects, again via selection of the contraction 
level parameter input value of the simulator software. Ten 
recordings, each of 5 s duration, were created at a sampling 
rate of 31,250 Hz with 16-bit resolution, along with the true 
MUAP annotations. 

 

C. Automated Decomposition Algorithms 

Three publicly-available decomposition algorithms were 
compared. Each is implemented in MATLAB, which was used 
for all computation. Each algorithm was used without manual 
editing, although such editing is the norm in scientific studies. 
Prior to automated decomposition, the quadrifilar 
experimental data were digitally highpass filtered at 100 Hz. 
Although the signal had been analog highpass filtered at 1,000 
Hz, this digital filter removed any offsets due to subsequent 
analog filter stages, including the analog to digital converter. 
The single channel experimental data were digitally highpass 
filtered at 500 Hz. This cut-off frequency was selected after 
visual review of a subset of the data, so as to reduce 
background noise and best accentuate spikes. All simulated 
data were digitally highpass filtered at 1,000 Hz, this cut-off 
frequency also being selected after visual review of a data 
subset. In all cases, a first-order Butterworth filter was 
designed, and then applied in the forward and reverse time 
directions to achieve zero phase shift. 

All three algorithms detected voltage spikes within the 
EMG (each spike is a candidate MUAP, typically with a 
registration time corresponding to its peak magnitude), 
classified spikes with similar shapes and resolved 
superimpositions. The first automated decomposition 
algorithm was the default algorithm implemented in the 
publicly-available “EMGlab” software [1]. This algorithm can 
only analyze single channel EMGs and thus was only used for 
our single channel data. The second algorithm was the 
“Montreal” algorithm [3]. This algorithm has no adjustable 
parameters. The third algorithm was the “Fuzzy Expert” 
algorithm [2]. With the Fuzzy Expert algorithm, we utilized 
ten algorithm passes and limited resolution of 
superimpositions to three MUs on the first two passes, five 
MUs on the third pass and six MUs thereafter. 

D. Methods of Analysis 

After highpass filtering (described above), all experimental 
and simulated quadrifilar data were automatically decomposed 
by the Fuzzy Expert and Montreal algorithms. The single 
channel experimental and simulated data were decomposed by 
all three automated algorithms. Decompositions of 
experimental signals were compared pair-wise between 
algorithms for each signal. Each MUAP annotation was said 
to match if both algorithms found a MUAP from the same 

train within a ±1 ms match window 1 , after determining a 
timing offset that accounts for the difference in MUAPT 
registration locations between the different algorithms [18], 
[24]. “Agreement” was measured as the number of matched 
annotations, divided by the sum of: (1) matched annotations 
and (2) unmatched annotations from either algorithm. 
Agreement results were expressed in percent. For the 
experimental quadrifilar data, results are only presented for 
those MUAPTs that exhibited a minimum of 20 matches 
between the Fuzzy Expert and Montreal algorithms (average 
of 4 matches per second over a 5 s recording duration). For the 
experimental single channel data, results are only presented 
for those MUAPTs that exhibited a minimum of 20 matches 
for each pairing between the three algorithms (i.e., those 
MUAPTs “found” by all three algorithms). For simulated data, 
the minimum number of required matches was one (i.e., every 
MUAPT that was extracted was analyzed). In addition to 
agreement results, decompositions of simulated signals were 
also compared directly to the true annotations (all MUAPTs 
included), this result being denoted “Accuracy,” since the true 
annotations were known. 

For each identified MUAPT for single channel data, a MU 
SNR (SNRMU) was computed as the peak-to-peak height of the 
MU divided by the RMS value of the entire channel [21]. A 
ten-bin histogram of all (negative/positive) peak values from 
all firings of a MUAPT was computed. A peak value was 
estimated as the average height of all values contributing to the 
histogram mode bin. This selection helps to reject peak values 
that might be unrepresentative due to MUAP superimpositions. 
For multiple-channel data, the SNRMU was computed 
separately for each channel and then averaged. The SNRMU is 
non-dimensional. For experimental signals, SNRMU was 
computed multiple times, using the annotations from each 
respective decomposition algorithm. For simulated signals, the 
measures were also computed using the truth annotations. 
Cross-plots of SNRMU vs. agreement (or accuracy) were 
created for each contraction level for each data set. The data 
from each plot were then least squares fit to the exponential 

model: MUSNRb
eaAgreement


100 , where a and b are the 

fit parameters. Except where indicated otherwise, performance 
differences were tested statistically using ANOVAs (two- or 
one-way), with post hoc pair-wise comparisons (when 
significant) conducted using Tukey’s honest significant 
difference (HSD) test. 

 

III. RESULTS 

Table I in the companion work [25] lists and discusses the 
number of MUAPTs detected and analyzed in the various data 
sets, the total number of excluded MUAPTs (due to fewer 
than 20 matches) for the experiments, as well as the actual 
(true) number of MUAPTs generated for the simulated data. 
The companion work also details the Spike Rate values for 
each data set. Spike Rate increased with MVC level. The 
average experimental control trial and simulated trial Spike 
Rate values were quite well matched, as designed.  

                                                           
1 Note that a different match window of ±0.5 ms was used in [25]. 



TABLE II 

SUMMARY AGREEMENT RESULTS FOR EXPERIMENTAL DATA AND ACCURACY 

RESULTS FOR SIMULATED DATA. EACH ENTRY LISTS MEDIAN [25TH 

PERCENTILE, 75TH PERCENTILE]. SIGNIFICANT DIFFERENCES INDICATED BY * 

(P < 0.05) OR ** (P < 0.01). 

 

 Agreement between algorithms (%) 

Experimental 

signals 

Montreal v 

Fuzzy 

Montreal v 

EMGlab 

Fuzzy v 

EMGlab 

  Quadrifilar    
    10% MVC 96 [  81, 100] — — 
    20% MVC 86 [  72,   97] — — 
    50% MVC  65 [  35,   84] — — 

  Single channel    

     Controls 97 [  87, 100] 97 [89,   98]   96 [91,   98] 
 

Simulated 

signals 

 

Accuracy of algorithm (%) 

Montreal Fuzzy EMGlab 

  Quadrifilar    
    10% MVC 100 [  98, 100] 100 [92, 100] — 
    20% MVC 100 [  98, 100] 100 [89, 100] — 
    50% MVC   99 [  93, 100]  97 [86, 100] — 

  Single channel 100 [100, 100]  96 [84, 100] 100 [98, 100] 
 

 

 

 

 

 

 

 
 

Fig. 1.  Agreement between the Fuzzy Expert and Montreal algorithms as a 
function of SMRMU for the quadrifilar experimental data. Each point 
represents one MUAPT. Results shown separately for each MVC level, and 
for all levels combined. Best fit exponential model shown in each plot, along 
with the RMS fit error. 

 

 
Fig. 2.  Accuracy with respect to the true decomposition for the simulated 
quadrifilar data as a function of SNRMU for the Montreal algorithm. Each 
point represents one MUAPT. Results shown separately for each MVC level, 
and for all levels combined. Best fit exponential model shown in each plot, 
along with the RMS fit error. 

 

General statistical comparisons of agreement and accuracy 
are shown in Table II. Table II also indicates statistically 
significant differences in results from one-way ANOVA 
comparisons and post hoc Tukey tests. For the quadrifilar 
simulation results only, paired t-tests examined statistical 
differences between the Montreal and Fuzzy Expert 
algorithms, at each MVC level. Agreement generally 
decreased with MVC level for the multiple-channel 
experimental data. The higher contraction data exhibited a 
substantial number of superimpositions (particularly at 50% 
MVC), which is not reflected in the SNRMU measure. 
Additionally, the higher-level contractions contained 
substantial smaller-amplitude “background” MUs that were 
not detected and, thus, contributed to an increased noise floor. 
For the quadrifilar simulation, Table II further shows that the 
Montreal algorithm was significantly more accurate than the 
Fuzzy Expert algorithm at 10% and 20% MVC, although both 
algorithms performed quite well. 

Fig. 1 shows agreement results (Montreal vs. Fuzzy Expert) 
vs. SNRMU for the experimental quadrifilar data. Figs. 2 and 3 
show accuracy vs. SNRMU for the simulated quadrifilar data, 
both as a function of MVC level and combined across levels. 
Similarly, agreement and accuracy results for experimental and 
simulated  single  channel  data are shown vs. SNRMU in Fig. 4.  

* 

** 

** 

** 

** 

** 

** 
** 



 

 
Fig. 3.  Accuracy with respect to the true decomposition for the simulated 
quadrifilar data as a function of SNRMU for the Fuzzy Expert algorithm. Each 
point represents one MUAPT. Results shown separately for each MVC level, 
and for all levels combined. Best fit exponential model shown in each plot, 
along with the RMS fit error. 

 

Each plot in Figs. 1–4 also shows the best-fit exponential 
model. Quantitatively, it is anticipated that agreement/accuracy 
is associated with SNRMU. Here, that relation is expressed by 
the goodness-of-fit of the exponential model, also listed in the 
plots. In general, agreement/accuracy increased with SNRMU. 

 

IV. DISCUSSION 

This study evaluated the agreement between pairs of 
automated decomposition algorithms when applied to 
experimental data, as well as the accuracy of these algorithms 
when applied to simulated data, each as a function of SNRMU. 
This study provides companion results to a prior full report 
that appeared in [25], using the DI. As such, we will 
concentrate our discussion on comparison of the SNRMU-
based results in the present paper to the equivalent results 
based on the DI. Note that our prior full report utilized a 
shorter duration match window for MU comparisons (±0.5 
ms), analyzed additional data not discussed herein and 
provided additional analysis not directly related to the SNRMU 
and DI measures. 

Figs. 1–4 in the present paper (SNRMU-based analysis) 
show a strong  relationship  between  SNRMU  and  agreement/ 

 

 
Fig. 4.  Agreement (top) between algorithm pairs (as labeled) as a function of 
SNRMU for the single channel experimental control data. Accuracy (bottom) 
with respect to the true decomposition for the simulated single channel data as 
a function of SNRMU. Best fit exponential model shown in each plot, along 
with the RMS fit error. Each point in a plot represents one MUAPT. 

 

accuracy, suggesting that high accuracy is most probably 
achieved whenever the SNRMU is high. Yet, these figures also 
show that the RMS errors from the best fit exponential model 
between agreement/accuracy and SNRMU were in the range of 
3.7–19.3%, depending on MVC level and electrode recording 
type. This RMS error seems moderately high, indicating that 
SNRMU does not account for all of the factors that affect 
decomposition accuracy. 

Comparison of the SNRMU-based results in Figs. 1–4 to the 
DI-based results shown in the prior full report (see 
corresponding Figs. 1–4, respectively, in [25]) shows that 
nearly identical trends are found. It is, in fact, difficult to note 
performance differences between the SNRMU-based and DI-
based models. Thus, the simpler SNRMU measure seems to 
predict achieved agreement/accuracy equally as well as the 
more complex DI measure. Future research might examine 
whether the combined use of these (and other) measures might 
provide better estimation of achieved agreement/accuracy. 

In summary, this companion study provides a systematic 
comparison of agreement/accuracy performance between three 
publicly available algorithms which perform decomposition on 
indwelling EMGs, as a function of SNRMU. For experimental 
data, RMS errors between the achieved agreement and those 
predicted by an exponential model as a function of SNRMU 
ranged from 8.4% to 19.2%. For the simulations, RMS errors 
between achieved accuracy and those predicted by the SNRMU 
exponential model ranged from 3.7% to 14.7%. 
Agreement/accuracy was strongly related to SNRMU. Prediction 
of agreement/accuracy based on SNRMU was essentially 
equivalent in performance to prediction based on DI. 
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