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This work describes a method using sparse optimization for the detection of K-complex in sleep EEG. K-complex is an
important feature in sleep stage identification, which is helpful to sleep disorder diagnostics process. In this work, a discrete-time
sleep EEG signal y∈RN is modeled as:

y = x1 + x2 +w, (1)

where x1 is the baseline trend, x2 is composed of K-complexes, and w presents noise. More specifically, x1 is piecewise
smooth comprising a lowpass signal component f , and a sparse order-K1 derivative component g1, i.e., x1 = f + g1. Further,
x2 is assumed as a transient waveform with a negative wave followed by a positive wave, and modeled as a ‘wavelet’ (e.g.
Fig. 1(b)). Moreover, x2 is modeled as the output of a high-pass filter, i.e., x2 = H2g2. In addition, we assume the order-K1

derivative of g1 is sparse, and we likewise assume the order-K2 derivative of g2 is sparse. In another word, g1 and g2 are
sparse-derivative signals, where u1 = D1g1, and u2 = D2g2 are both sparse. Adopting the zero-phase filter design techniques
discussed in Ref. [3], and the idea of morphological component analysis (MCA) [4], we formulate the optimization problem:
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where ρ1 and ρ2 denote penalty functions. The high-pass filters are expressed as H1 = A−1
1 B, H2 = A−1

2 B, with B =
B1D1 = B2D2. Using the solution from (2), we recover x1 and x2 by:
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Problem (2) both decomposes the data y into x1 and x2, and performs denoising. It can be solved iteratively by majorization-
minimization (MM) [2]. Further, the proposed algorithm is computationally efficient as it makes use of banded matrices. We
use an asymmetric penalty function to capture the morphology of K-complex, and implement a simple detector by thresholding
the local energy of x2. We test the proposed method by the public dataset collected in [1]. It achieves a better accuracy
(F-measurement) than the result reported in [1]. An example is illustrated in Fig. 2.
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Fig. 1. (a) K-complex detail, (b) transient component signal model.
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Fig. 2. Comparison of detection results: method proposed in [1], bandpass
filtering, our proposed method, expert.
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