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Abstract—The present study deals with the reconstruction of the 
continuous-time state space parameters proper of human quiet 
standing. The reconstruction utilized a hybrid non-linear 
extended Kalman filter to combine a biomechanical model with 
the discrete-time position measurements provided by two web-
cameras via a General Linear Camera model. After camera 
calibration and validating the filter in simulation, we performed 
the estimation on a group of volunteers whose quiet standing was 
perturbed by means of a hold and release paradigm. The filter 
allowed estimating stiffness and damping of the ankle during 
quiet standing as well as the kinematic variables of the subjects’ 
center of mass.  

Index Terms—biomechanics, Extended Kalman Filter, joint 
stiffness, General Linear Camera model 

I. INTRODUCTION 
The advent of video communication via internet protocols 

has favored the mass production of video-based system which 
nowadays can be acquired inexpensively. Furthermore, 
numerical algorithms that take into account the camera’s 
optical model have allowed the adoption of raster image as a 
viable mean to estimate the position of objects in the three-
dimensional Cartesian space [1]. When using a set of cameras 
to estimate the position of an object in space, the spatial 
resolution can be limited by the number of pixel of the 
photographic sensors. The knowledge of an accurate model of 
the camera is then necessary to reconstruct the position of an 
object in space based on its projection on the camera plane. 
This paper shows the possibility to achieve sub-pixel 
resolution by using an accurate camera model. In the proposed 
methodology, a linear regressive algorithm is used for the data 
fusion between the model and the measurement. We applied a 
general linear camera (GLC) model, previously utilized for the 
vision-based control of robotic devices [2], to a set of low-end 
web-cameras for estimating the postural stability of human 
quiet standing. 

Understanding the mechanisms involved in postural 
stability is indispensable to improve the knowledge of how 
humans can regain balance against possible disturbances. 
Postural stability requires the ability to compensate the 
movement of the body’s center of gravity caused by 
unexpected perturbations. The estimation of ankle mechanical 
impedance is an important tool used to gain insight on the 
interaction between biomechanics and the neural correlates 
proper of the control of postural stability [3]. Impedance is 
often modelled using a second order system, where the joint 
torques to resist a perturbation is a linear combination of 
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acceleration, velocity, and angular displacements of the joints, 
and the coefficient of proportionalities are known as inertia, 
stiffness and damping [4].  

In many engineering fields the use of Kalman filtering is 
widely spread to characterize the state matrix of linear systems 
for its characteristics of optimality and fast estimation. This 
paper proposes the identification of the stiffness and damping 
parameters of the ankle via the data fusion of a biomechanical 
model and the positional estimates obtained with a vision-
based system. To this end we propose a time series analysis of 
the measurement by means of an extended Kalman filter 
(EKF) with augmented states. The perturbation to the 
biomechanical system is delivered using the hold and release 
paradigm as proposed by Bortolami and colleagues [5]. The 
advantages of EKF based methods are the possibility to have 
fast estimations on a single trial, offering the potential to 
estimate muscle and tendon stiffness during learning processes 
and adaptations on a trial by trial basis. The technique was 
tested on synthetic data to evaluate its precision and hence 
employed with living subjects. 

II. METHODS 

A. Hold and Release Paradigm 
The hold and release paradigm (H&R) is a technique to 

perturb the quiet standing of an individual, with the scope of 
exciting a neuro-mechanical response against falling [5]. 
Figure 1 illustrates the paradigm in detail.  

In phase A the subject is in quiet standing and s/he is 
generating a torque at the ankle to counteract the torque 
generated by gravity as the center of mass is slightly forward 
with respect to the pivoting point at the ankle.  

In phase B the experimenter applies a steady force, to the 
subject’s sternum as to push her/him backwards. Hence, the 
subject produces a torque at the ankle to counteract the 
external load, which generates a torque around the same 
pivoting point. When the external load is suddenly removed in 
phase C the torque that was exerted by the subject to 
counteract the external load drives the body forward.  

In phase D the fall is halted by the reaction of the neuro-
mechanical systems through the application of a counteracting 
torque at the ankle. This is the instant after which the time 
series describing the position of the whole body center of 
gravity (COG) can be used in a system identification 
algorithm to identify the properties of human balance. Indeed, 
the subject is at its largest displacement far away from the 
equilibrium position. At this point we can hypothesize that the 
central nervous system (CNS) imposes a desired position 
command to bring the COG back to the equilibrium position 
as fast as possible. The command, as a first approximation, 
can be assume to be a step. The error between the desired 
angular position 𝜃!  and the actual position induces the 
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generation of a torque at the ankle via the neural-controller. 
The torque is applied to the muscle-skeletal system which 
moves toward the desired equilibrium position (Fig.1D-A). 
Thus, after a transient response, posture is finally stabilized as 
it was in phase A. 

B. Hardware Description end experimental protocol 
The apparatus to capture the H&R paradigm requires a 

system able to track the continuous change in position of the 
subject’s center of mass. For this work we developed an 
affordable vision system to track the subject’s center of mass 
position. We used a raster image acquisition system composed 
of two USB webcam Logitech c170 with definition of 
640x480. The analysis and software interface was developed 
using Matlab 7.12.0. Two green fluorescent markers were 
placed onto each of the 16 neurologically intact subjects: one 
on the ankle to identify the center of rotation and one right 
above the navel. The placement of the latter marker is a good 
approximation of the subjects’ center of gravity (COG) during 
quiet standing [6]. 

The subject positioned himself in a natural posture. The 
experimenter pushed the subject on the sternum while the 
subject tried to resist the perturbation. Hence a sudden release 
triggered the control reaction for recovering falls while the 
position of the COG was recorded by the vision based system.  

C. Pinhole Camera Model and Estimation of 3D points 
A linear relationship between points in three dimensional 

space and their projections in the plane of each camera sensor 
can be established based on the pinhole camera model. The 
mapping corresponding to the pinhole camera model is 
defined by a matrix 𝐶 [3×4] formed by scalars, which has 
only 11 degrees of freedom (DOF) [1]. The 𝐶 matrix can be 
decomposed in the following form:  

𝐶   =   𝐾!𝑅![𝐼  |   − 𝐷]        (1) 

where 𝐼 is the  3  ×3  identity matrix, 𝐷  is the center of the 
camera with respect to a world reference frame, 𝑅! is a 
rotation matrix in 3D, and   𝐾!   is the calibration matrix: 

  𝐾! =
𝛼! 𝑆 𝑝!
0 𝛼! 𝑝!
0 0 1

               (2) 

 where 𝛼! and  𝛼! correspond to the focal distance 
multiplied by an adjustment factor to consider the possibility 
that the sensor cells of the camera (CCD for example) are not 
squared,  𝑝! and  𝑝! are the coordinates of the principal point 
(center of the image) and S is the skew factor, which is zero if 
the axis of the sensor are orthogonal (normal case). The matrix 
  𝐾! has  5 DOF and the matrices 𝑅 and 𝐷 have 3 DOF each 
summing up to a total of  11 DOF 𝐶.  

The relationship between the point in 3𝐷 space and its 
projection in the image is well known in the robotics literature 
and it is given by the following equation [7]: 

𝑥
𝑦
1
=

𝑐! 𝑐! 𝑐!
𝑐! 𝑐! 𝑐!
𝑐! 𝑐!" 𝑐!!

      
𝑐!
𝑐!
1

𝑋
𝑌
𝑍
1

     (3) 

where [𝑥, 𝑦]! is the point in the image and 𝑋,𝑌,𝑍 T is the 
point in the world reference frame. Equation (3) can be 
rewritten as a linear system in the following manner [2]: 

1 0 0 0 0
C=

0 0 0 0 1
X Y Z xX xY xZ x

X Y Z yX yY yZ y
− − −⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦
  (4) 

To calculate the matrix 𝐶 at least 6 points are required 
(𝑖 = 1,2, . . . , 6). However, 5 points and the coordinate 𝑥 or 𝑦 
of the sixth point are enough to find the analytical solution of 
the 11 parameters of vector  𝐶.  If more than   6   points are used 
in computing  𝐶, an over constrained system is obtained and a 
minimization process is required to yield the solution. An over 
constrained system produces better results when estimating the 
vector 𝐶 in the sense that the minimization process averages 
out the white noise in the estimation of the 𝐶 parameters if the 
data number is large and the visual cues are located widely 
spread on the image plane. 

Once the C parameters, have been obtained for at least two 
participating cameras, the target point 𝑋 𝑌 𝑍 ! can be 
estimated by solving the once redundant set of equations:  

𝑥!
𝑦! =

𝑐!
! 𝑐!

! 𝑐!
!

𝑐!
! 𝑐!

! 𝑐!
!     
𝑐!
!

𝑐!
!

𝑋
𝑌
𝑍
1

  𝑓𝑜𝑟  𝑗 = 1,2 (5) 

Where (𝑥! , 𝑦!)  represent the sampled camera-space 
location of the target point on camera 𝑗. 

D. Static Calibration 
To calibrate the vision system two cameras are positioned 

in two different fixed locations. Furthermore, a set of objects 
whose location is known in space is also required. The 
calibration was done positioning four checkerboard targets on 
each of the two orthogonal planes defined by a parallelepiped. 
The cameras where positioned so that both sides of the control 
volume could be in view (Fig. 2).  

Each checkerboard has 6 X 8 squares where each square is 
30 mm X 30 mm. The checkerboards were positioned pair-

 
Fig.	
  1	
  A)	
  Quiet	
  standing.	
  B)	
  Hold.	
  C)	
  Release	
  with	
  consequence	
  

acceleration	
  of	
  the	
  center	
  of	
  mass	
  forward.	
  D)	
  Recoil	
  where	
  fall	
  is	
  
prevented	
  and	
  quiet	
  posture	
  is	
  regained	
  as	
  in	
  condition	
  A.	
  



 

3 
 

wise orthogonally to each other at four different levels so to 
cover the positions in which shoulder, hip, knee and ankle are 
located for a person whose stature is 175cm (Fig. 2). A total of 
n=117 corners of each checkerboard pair were acquired by 
each camera, each representing a calibration point. 

To assess the accuracy of the C parameters and the overall 
precision of this vision system, the 𝐶 parameters were 
computed using only (n-1) points out of the 𝑛 original points, 
the 3D position for the ith point, which was left out from the 𝑛 
data points, was estimated. Then, an error was defined as the 
Euclidean distance between the actual 3D position of the point 
and its estimated position by the vision system so that an error 
was associated to that point. This process was repeated for all 
n points. The average error among all points was 1.89 mm 
with a standard deviation of 0.95 mm. The separation distance 
between the cameras and the calibration pattern was about 2.5 
m and the pixel resolution was 4 mm/pixels which correspond 
to 0.0035 rad of angle resolution. Note that due to the least 
square regression described in section II.C it is possible to 
reach sub-pixel accuracy. With these results it was possible to 
conclude that a high profile camera for vision-machine 
applications was not required and off-the-shelf webcams with 
a 640 X 480 pixels resolution provide enough accuracy to 
estimate 3D points on a camera scene.  

E. Measurement via Raster Images 

Even though the movement of the subject in the H&R 
paradigm occurs approximately on a plane, when the static 
calibration is completed the cameras do not need to be 
relocated in order to be precisely aligned with a plane parallel 
to the movement. Two cameras can acquire any plane in 3D 
independently of the subject position. After the C parameters 
are calculated a linear mapping can be created between the 
position of any point in 3D space and their representations in 
the cameras’ plane. The two green circular markers placed on 
the subjects’ body were used as visual cues. The markers were 
identified within the camera space of both cameras by filtering 
all colors except green and then computing the centroid of the 
detected pixel clusters on camera space. Both visual markers 
positioned on the subject above the navel and on the ankle 
were detected by both cameras. Their corresponding 3D 
locations were estimated by using the position in camera space 
for each image as explained in section II.C. The time-series of 
the angular position between the secant line intersecting the 

two markers and a vertical line parallel to the direction of 
gravity was computed as the sum of the corresponding 
subtended arcs of an inverted pendulum tip between two 
consecutive instants. 

F. Extended Kalman Filter Tuning and Parameter Estimation. 

 After obtaining the parameters of the GLC model, the 
position of the center of mass of each subject can be estimated 
in three-dimensional space. Hence the radius of gyration and 
the angle between the direction of gravity and the vector 
connecting the ankle with the COG can be estimated with 
simple trigonometry. Thus, as a first approximation, the 
biomechanical system describing quiet standing can be 
modeled as an inverted pendulum with one degree of freedom 
(DOF) (i.e. the rotation around the ankle) which can be 
represented by the following equation: 

𝐼!𝜃 + 𝑏𝜃 + 𝑘θ = 𝑚𝑔ℎ ∙ sin θ + 𝑢 + 𝑤!    (6) 

where for small oscillation sin θ ≅ θ, yielding: 

𝐼!𝜃 + 𝑏𝜃 + 𝑘 −𝑚𝑔ℎ θ = 𝑢 + 𝑤!      (7) 

where 𝑤! is the uncertainties of the system modeled as a 
Gaussian noise, Ih is the inertia of the whole body with respect 
to the ankle, b is the damping coefficient, 𝑘 is the stiffness, m 
is the mass of the subject, h is the radius of gyration of the 
subject and g is the acceleration of gravity. The term 𝑢 is an 
additional external force. For this work 𝑢 = 0 as the effect of 
gravity is already implemented as a constant stiffness mgh in 
equation (7). We can define an augmented state space model 
of equation (7) adding a number of states equal to the number 
of parameters that we want to estimate (i.e. 𝑏 and 𝑘) so that 
the states are defined as 𝑥! = 𝜃, 𝑥! = 𝜃, 𝑥! = 𝑏 + 𝑤!, 
𝑥! = 𝑘! + 𝑤! where 𝑘! = 𝑘 −𝑚ℎ𝑔. The terms 𝑤! and 𝑤!! 
are artificial noise terms that must be added to the system for 
each of the desired parameter (i.e. 𝑏 and 𝑘!) in order for the 
Kalman filter to modify their estimate [8]. Thus, the 
augmented state space system is defined by the following 
equation: 

𝐱 =

𝑥!
𝑥!
𝑥!
𝑥!

=

𝑥!
!
!
𝑤! − 𝑥!𝑥! − 𝑥!𝑥!

𝑤!
𝑤!!

     (8) 

and 

𝐰 =
𝑤!
𝑤!
𝑤!!

          (9) 

we can apply a hybrid Extended Kalman filter, in the 
following form: 

𝐱 = 𝐟 𝐱,𝐰, 𝑢, 𝑡
𝐲! = 𝐡! 𝐱! , 𝐯!

𝐰~ 0,𝑄
𝐯!~ 0,𝑅!

       (10) 
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where 𝐰 and 𝐯 are random noise of the augmented system 𝐱 
and the measurements vector 𝐲! respectively, the subscript 
indicates the 𝑘 discrete measurement acquired. The filter is 
initialized as follows: 

𝐱!! = 𝐸 𝐱!
𝑃!! = 𝐸 𝐱! − 𝐱!! 𝐱! − 𝐱!! !       (11) 

where circumflex is used to indicates the best estimates of a 
vector. The superscript “+” indicates that the current 
measurement has been considered for the estimation, whereas 
when the superscript is a “–“ sign the last measurement has 
been not considered.  From the initial values the following 
system can be defined 

𝐱 = 𝐟 𝐱,𝟎, 𝑢, 𝑡   
𝑃 = 𝐹𝑃 + 𝑃𝐹! + 𝐿𝑄𝐿!

       (12) 

The numerical integration process begins with 𝐱 = 𝐱!!!!  
and 𝑃 = 𝑃!!!! . At the end of this integration we have 𝐱 = 𝐱!! 
and 𝑃 = 𝑃!!. So the next expressions can be calculated: 

𝐾! = 𝑃!!𝐻!! 𝐻!𝑃!!𝐻!! + 𝑅 !!

𝐱!! = 𝐱!! + 𝐾! 𝐲! − 𝐡! 𝐱!!,𝟎, 𝑡!
𝑃!! = 𝐼 − 𝐾!𝐻! 𝑃!! 𝐼 − 𝐾!𝐻! ! + 𝐾!𝑅!𝐾!!

  (13) 

where 𝐹 = !𝐟
!𝐱 𝐱,𝐰

 and 𝐿 = !𝐟
!𝐰 𝐱,𝐰

, and 𝐻! =
!𝐡!  
!𝐱! 𝐱!

!
. 

For the calibration of the EKF parameters synthetic data 
was built from the solution of (7). The synthetic data was 
created based on the experimental data. Thus, the position and 
velocity of the synthetic data was corrupted by Gaussian noise 
𝐰~𝑁 0,0.02 , and a sampling rate of 10Hz was used in a 
time-series of 30 seconds. Finally some physiological 
parameters similar to the experimental data were used: 
𝐼!   =   100 𝐾𝑔  𝑚!/𝑟𝑎𝑑 , 𝑚   =   80 𝐾𝑔 , ℎ   =   1 𝑚 , 
𝑘   =   1000 𝑁  𝑚/𝑟𝑎𝑑   , 𝑔   =   9.81 𝑚/𝑠! , 𝑘!   =   𝑘  –   𝑚𝑔ℎ =
215.2, 𝑏 = 𝐼!𝑘! = 146.6970, 𝐱! = 0.1 0 ! 

Subsequently, the synthetic data is analyzed using the EKF 
in order to tune the filter parameters. The EKF was tuned 
using the following parameters: 

𝑃! =

1
0
0
0

0
1
0
0

0
0
100
0

0
0
0
100

; 𝐱! =
0
0
250
250

;       (14) 

𝑄 =
0.1 0 0
0 0.1 0
0 0 0.1

;𝑅 = 0.001 0
0 0.001 .  

Since 30 seconds of data sampled at 10 Hz is a limited 
amount of information to achieve convergence, we 
implemented a recursive algorithm where the filtering was 
repeated several times in the same set of data. For each 
iteration the last estimation of the parameters was used as an 

initial value for the next step until a difference between the 
initial conditions and the last estimation for both parameters 𝑏 
and 𝑘! become less than 0.01.  

III. RESULTS 
We can hypothesize that the movement of the COG is a 

direct consequence of the torque applied to the physical 
system to stabilize it. When the subject COG reaches the 
absolute maximum angular displacement with respect to the 
equilibrium position (-0.1rad circa) we are at the beginning of 
the recoil phase (Fig. 1D). From this point on, the condition is 
equivalent to a step in position as described in section II.A. 
The control system is reacting to drive the system back to its 
original equilibrium position. In Fig. 3 we can observe the 
angular displacement of the COG around the ankle with 
respect to the initial position for both the numerical simulation 
(left) and one representative subject (right). The estimation of 
velocity, damping “b” and stiffness “ks” are also included. 
The error in the estimated value of the in-silico experiment are 
Error_b = 3.906 % and Error_ks=1.47%. 

By observing that all subjects were under-damped, we 
could measure the natural frequency of the system by means 
of a fast Fourier Transform (FFT). The ankle stiffness 𝑘 can 
be easily calculated from the following relation: 

(𝑘 −𝑚𝑔ℎ) = 𝐼!𝜔!! = 𝑚ℎ!𝜔!!    (15) 

where 𝐼!  is the moment of inertia with respect to the ankle, 
calculated as the mass m multiplied by the square of the 
distance h between the ankle and the position of the COG (i.e. 
the radius of gyration). This procedure gives us an 
approximate estimate of the ankle stiffness that can be 
compared with the EKF estimates. Table I shows that the 
average error between the two estimates is about 10.2%. 

IV. DISCUSSION AND CONCLUSION 
In this work we developed a motion capture system based 

on raster image. The two low-end commercial web-cameras 
were interfaced with a GLC algorithm that transforms the 
markers coordinates acquired in camera space to coordinates 
in Cartesian space. Furthermore, a biomechanical model of the 
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human was integrated with the direct positional measurements 
from the cameras to reconstruct the tracked movements in the 
joint space and estimate the neuro-mechanical properties of 
the control of the ankle. When the system is approximated as 
second order, stiffness is the principal variable regulating the 
dynamic behavior of human movements and has been often 
considered as a figure of merit during the rehabilitation 
process from injuries and neuro-degenerative diseases [9-13]. 
The information from the joint angular displacements together 
with the estimation of stiffness and damping at the ankle could 
be utilized to estimate the dynamic behavior of the recovery to 
prevent falls. 

In our experimental dataset we found that quiet standing 
was always subject to a residual vibration after perturbation. 
However, our research suggests that there exists a theoretical 
basis to expect a critically damped behavior [14]. One of the 
advantages of using an EKF instead of a frequency domain 
analysis is the possibility to identify the system even in over-
damped conditions. Indeed, a frequency domain analysis 
requires a residual oscillation to be present, so that under the 
assumption of a second order model, the system has two 
complex conjugated poles [4, 15-17]. By using and EKF it is 
possible to estimate stiffness and damping even if the system 
has two real poles. 

This approach can provide important experimental basis for 
the enhancement of dynamic simulations aimed at estimating 
muscle properties for human rehabilitation and performance 
improvement [18]. 

A limitation of the EKF presented here is the inherent 
assumption of a parametric model with time invariant 
parameters, where instead previously proposed time-frequency 
techniques tend to be very effective. Future work will focus on 
the estimation of parameter for a third order system where the 
stiffness of tendon and muscle can be estimated separately 
[19]. 

TABLE I 
STIFFNESS AND INERTIAL PARAMETERS OF EACH SUBJECT 

Num Weight 
[kg] 

Height 
[m] 

k_freq 
[Nm/rad] 

k_EKF[Nm/rad] Error 
% S1 88.45 1.80 1007.1 1076.9 6.9 

S2 90.72 1.91 1253.7 1143.4 8.8 
S3 76.66 1.73 852.3 778.5 8.7 
S4 65.00 1.71 639.1 637.6 0.2 
S5 65.00 1.65 792.9 842.2 6.2 
S6 87.31 1.75 920.7 924.1 0.4 
S7 106.14 1.75 1158.6 1151.0 0.7 
S8 104.33 1.72 1101.0 1118.6 1.6 
S9 69.85 1.70 998.4 1005.4 0.7 

S10 116.21 1.85 1381.5 1348.3 2.4 
S11 102.06 1.73 1827.6 1174.8 35.7 
S12 68.04 1.71 811.4 764.8 5.7 
S13 108.86 1.88 1073.1 1199.9 11.8 
S14 80.65 1.80 972.3 1090.0 12.1 
S15 100.61 1.75 1119.0 1263.1 12.9 
S16 97.52 1.88 2032.2 1054.9 48.1 
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