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Abstract—We present an algorithm, Sparse Atomic Feature
Learning (SAFL), that transforms noisy labeled datasets into a
sparse domain by learning atomic features of the underlying
signal space via gradient minimization. The sparse signal rep-
resentations are highly compressed and cleaner than the original
signals. We demonstrate the effectiveness of our techniques on
fMRI activity patterns. We produce low-dimensional, sparse
representations which achieve over 98% compression of the
original signals. The transformed signals can be used to classify
left-out testing data at a higher accuracy than the initial data.

I. INTRODUCTION

Many fields of interest are faced with the challenge of
making sense of observations of noisy, repeated signals. We
start with a set of N observations of a D-component signal,
represented as columns of the N×D signal matrix V. We seek
a sparse decomposition of the signals into a low-dimensional
linear combination of fundamental atomic features, represented
by the columns of the D ×K feature basis matrix F, where
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K � N . The sparsely encoded signal is represented by the
columns of the K×N sparse signal matrix A. The sparsity and
dimension reduction of the encoding A provides high signal
compression. The sparse signals produced by the proposed
algorithm, which we call Sparse Atomic Feature Learning
(SAFL), are shown to be cleaner representations of the under-
lying class structure, resulting in a higher classification rate
than the original signals as measured by a linear classifier.

The power in the proposed technique is that it leverages
prior information of sparsity and repeated signal classes by
using a gradient minimization approach coupled with sparsity-
seeking `1 minimization, producing a variant of the fused lasso
[1]. We also employ a norm-scaling technique to model the
noise, greatly improving the results. Our transformation pro-
duces a set of basis features that can give interesting insights
into the atomic features composing the original signals.

Sparse coding has previously been suggested as a mech-
anism for representing information in the brain [2], [3]. The
encoding of visual features has been shown to employ sparse
coding at different levels of the visual processing hierarchy,
from V1 [4] to inferotemporal cortex [5]. Here we present the
SAFL algorithm to discover underlying neural representations
that takes advantage of this sparse coding. We demonstrate
this capability empirically by decoding physiological measure-
ments of neural activity from fMRI to obtain the stimulus
identities giving rise to them.



II. METHODS

In Section IV we apply SAFL, defined in Section III, to
fMRI measurements of neural activity. We seek to decompose
fMRI data into a set of fundamental basis features, which could
be associated with semantic features of the underlying stimuli.
We use Dataset 10 from [6] because it is a large, publicly
available dataset consisting of 35 different stimulus classes and
10 repetitions per class, for 350 stimulus presentations. The
data consists of recorded time series for fMRI BOLD (blood-
oxygen-level dependent) contrasts of the individual voxels
that comprise the brain volume. The experimental design is
described in detail in [6]. In Section II-A, we describe the
preprocessing used to denoise the data and to transform the
data from the temporal domain to the event-driven domain.
SAFL is applied to this event-driven data, and its performance
is tested using classification methods described in Section II-B.

A. Preprocessing: GLM denoising

To prepare the data, the fMRI BOLD data were divided
into training and testing sets using a leave-one-run-out cross-
validation design. In each fold of the cross-validation, 9 out of
10 runs (training set) were used for model optimization, and
the remaining run (testing set) was used to test performance.
Software provided as part of the GLMdenoise package [6] was
used to estimate the hemodynamic response function (HRF)
from the training data. The resulting response estimates, or
beta weights, can be thought of as the results of a transfor-
mation from the temporal domain to the event domain. The
voxel betas were stored in two matrices, V and Vtest, with the
rows corresponding to voxels and the columns corresponding
to stimuli.

Dimensionality was reduced by selecting the most stable
voxels [7], meaning the voxels that demonstrated the most
consistent responses across training runs. Pairwise correlations
were determined between the patterns of responses (sorted
by stimulus) for each pair of training runs for each voxel.
The mean correlation across runs was considered the stability
measure. The matrices V and Vtrain were replaced by the
respective submatrices corresponding to the 500 most stable
voxels from the stability analysis of the training data, V.
The results are: a 500 × 315 signal matrix V, comprised of
N = 315 signal responses to 35 stimuli (9 repetitions each)
for D = 500 voxels, and a 500 × 35 testing matrix, Vtest, of
testing signals, one for each stimulus type.

B. Classification

LIBSVM [8], a linear SVM (support vector machine)
classifier, was used to produce all classification results reported
in Section IV. We used LIBSVM in two different modes of
classification. The first mode was to use LIBSVM’s internal
cross-validation tools to internally fold the data into training
and testing subsets. LIBSVM then reports the percent correct
over all the folds. We applied this method of classification on
the training data (V or A), considering the data as an aggregate
signal set of nine folds. The second mode used was manually
performing cross validation by explicitly training LIBSVM on
a training data set (V or A), and testing the trained model
on the corresponding left-out testing data (Vtest or Atest). In
this case, the predicted labels were then compared to the true
labels, and the percent correct performance was reported across
all ten folds.

III. SPARSE ATOMIC FEATURE LEARNING

A. Notation

We use to the following notation. We define In to be
the n × n identity matrix. Lower case bold characters refer
to vectors and upper case bold characters correspond to ma-
trices. Matrices will consist of the component representation
M =

(
mi
j

)
, with column vectors {mj} and row vectors {mi},

however we may also refer to columns of M by Mj , when
convenient. Likewise, for an index set s, we may refer to
the columns and rows of M indexed by s by Ms and Ms,
respectively. The transpose of a matrix M is denoted by MT .

We will employ an `1 norm of a matrix, |M| =∑
i,j |mi

j |. We will also use the Frobenius norm, ||M||2Fro :=

Tr[MTM]2 =
∑
i,j(m

i
j)

2. Furthermore, we will use the
Mahalanobis semi-norm, with respect to the symmetric scaling
matrix, S:

||M||2S = ||S−1/2M||2Fro = Tr[MTS−1M]2.

We define the outer product of two vectors to be u⊗v, where u
is a column vector and v is a row vector. The gradient operator
∇x applied to a matrix M is given by the matrix consisting
of the column vectors Mj+1 −Mj . Finally, 〈xr〉{r∈R} is the
expectation of x over the index set R.

B. Low-dimensional signal representation

We assume a finite set of stimuli, G = {g1, . . . , gP }.
Define the stimulus presentation vector as s = (s1, . . . , sN )
with si ∈ G. We assume that s is sorted by stimulus: for
si = gk and sj = g`, i < j implies k ≤ `. Further, we assume
that a D dimensional signal for stimulus i is measured, given
by vi = (v1, . . . , vD)

T .

Starting with a raw signal matrix V = [v1, . . . ,vN ] corre-
sponding with stimulus labels s, the goal of this formulation
is to prescribe a method of learning an atomic feature basis
set, represented by the feature matrix F = [f1, . . . , fK ], and
the corresponding coefficients. Traditionally, F is called a dic-
tionary and the columns are called atoms. The representation
of a signal vector vi is given by the coefficient vector ai:

vi =
∑
k

fka
k
i + ηi = Fai + ηi,

where ηi is the observation specific additive noise and ai =
(a1i , . . . , a

k
i )
T are the coefficients that, if sparse, gate on/off the

participating atomic features associated with stimulus si. The
transformed signal ai is then an encoding of the raw signal vi.
We define A = [a1, . . . ,aN ] to be the coefficient matrix with
column i corresponding to presentation si ∈ G. Similarly, we
define the noise matrix N = [η1, . . . , ηN ] and arrive at the
matrix equation

V = FA +N .
The goal is to solve the minimization problem

(F?,A?) = argmin
F,A

||V − FA||2Fro. (1)

The solution to (1) yields an approximation F? to the atomic
feature set, which serves as a basis for the observed signals,
and the corresponding coefficients such that F?A? ≈ V. The
encoding matrix A is a transformation of the signal matrix V,
decreasing the dimensionality of the signal from D raw values
to K feature coefficients.



C. Constraining the problem

In this section we introduce Ψ, an operator to regularize the
coefficient matrix A. We make the following two assumptions
on the data, and construct Ψ to meet these assumptions. The
first assumption is that incongruous stimulus classes, such as
rabbit and helicopter, have very few features in common.
To capture this characteristic in our framework, we enforce
sparsity in the transformed signal matrix A through an `1

penalty term. This allows gating on and off of features across
independent stimulus presentations. The second assumption is
driven by the following. Features encoding the stimulus rabbit
should be persistent across presentations of the rabbit. In our
model, agreement between features for the same stimulus is
given by: if si = sj = g` ∈ G then ai = aj . To satisfy this
assumption, we introduce a gradient term ∇x, which penalizes
column differences in A. As the data is sorted in stimulus
order, this amounts to penalizing whenever the adjacent signals
differ.

Combining the regularization terms from our two assump-
tions, the resulting unconstrained optimization problem is

(F?,A?) = argmin
F,A

µ

2
||V − FA||2Fro + |ΨA|

for Ψ =

(
IK
γ∇x

)
,

(2)

where µ controls the strength of the reconstruction error
penalty and the regularizer Ψ consists of the sparsity penalty
IK and gradient penalty γ∇x. The scalar γ controls the ratio
between gradient and sparsity penalties.

D. Modeling the noise

Inspired by [9], we explored scaling the reconstruction
energy by a robust dispersion measurement matrix which
approximates the inverse of the reconstruction error covariance
matrix. This adjusts the error computation for approximated
correlations in the data error. In scaling, we replace ||V −
FA||Fro by ||V−FA||S, for scaling matrix S. The generalized
minimization problem becomes

(F?,A?) = argmin
F,A

µ

2
||S−1/2(V − FA)||2Fro + |ΨA|

= argmin
F,A

µ

2
||V − FA||2S + |ΨA|,

(3)

where S can be either I for the non-scaled formulation, or
Σ in the Σ-scaled formulation. In the Σ-scaled formulation,
a robust dispersion model is given by Σ, which is defined
as follows. The model signal mj = m(s = gj) is the
median of the set of signals for stimulus gj given by mj =
median({vi : si = gj}). This model signal is favored
because it is more robust to outlier and non-Gaussian noise,
which is often observed in data of interest. Given the model
signal, the robust dispersion model scaling matrix is:

Σ :=

〈〈
(vi −mi)⊗ (vi −mi)

T
〉
{i | si=gj}

〉
gj∈G

. (4)

The scaling matrix defined in (4) and applied to (3) effectively
weights the minimization penalty applied to each signal com-
ponent with respect to the expected correlated dispersion of
noise in the components, as observed in the training data.

E. Algorithms for solving the system

The problem of minimizing ||V − FA||Fro for unknown
dictionary F and coefficient set A is a well studied, non-
convex problem. However, our problem is more involved
due to the addition of the gradient term. Dictionary learning
problems of the form ||V − FA||Fro are typically solved by
alternating the processes for minimization with respect to the
dictionary D, and minimization with respect to the coefficients
A. We approach this problem in the same way, but additionally
address the regularizer Ψ. We call the high-level algorithm
SAFL which we introduce in Algorithm 4. First we introduce
the primitives of the algorithm written with respect to a general
scaling matrix S, where for our purposes S will either the
identity in the non-scaled formulation or Σ in the scaled
formulation.

1) Coefficient optimization: To solve for the coefficient
matrix A we apply Algorithm 1, forward-backward splitting
[10]. Forward-backward splitting was chosen to eliminate the
need to compute the inverse of FTF, which is a dense operator.

Algorithm 1 ForwardBackwardSplitting

Require: V,S,F(0),A(0)

1: while not stopping criteria do
2: Ã(k) = A(k) − τFTS−1(FA(k) −V)

3: A(k+1) = argmin
A

|ΨA|+ µ
2τ ||A− Ã(k)||2Fro

4: end while
5: return A(k)

To solve the proximal step in line 3, we use Split Bregman
[11] as outlined in Algorithm 2.

Algorithm 2 SplitBregman

Require: D(0) = B(0) = 0, Ã(k),U(0) = Ã(k)

1: while not stopping criteria do
2: U(r+1) = argmin

U

µ
2τ ||U−Ã(k)||2Fro+ λ

2 ||D(r)−ΨU−

B(r)||2Fro
3: D(r) = argmin

D
|D|+ λ

2 ||D−ΨU(r+1) −B(r)||2Fro
4: B(r+1) = B(r) + (ΨU(r+1) −D(r+1))
5: end while
6: return U(r)

2) Dictionary optimization: K-SVD is used to update the
dictionary F [12], [13]. Though K-SVD is often used in
conjunction with orthogonal matching pursuit (OMP) [14], it
is a dictionary update algorithm that is independent of the
coefficient optimization algorithm. The powerful aspect of K-
SVD is that it preserves sparsity in the coefficient matrix. K-
SVD is given in Algorithm 3.

Algorithm 3 preserves the sparsity pattern of A by using a
mask for its zero elements corresponding to feature fk. An
error measure is computed using the non-masked elements and
while ignoring the contributions of fk. A best fit to compensate
for the error is then determined via the minimization which can
be done with SVD (justifying the name) as in [12] or using a
faster alternating optimization technique as in [13].



(a) (b) (c)
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Fig. 1. Results for the sparse encoding of the first 100 signals: (a) AΣ, (b) AΣ
test, (d) AI and (e) AI

test. The coding of the signals as the coefficient matrices
are sparse from the `1 penalty term, and horizontally banded due to the gradient penalty. This banding, however, is stronger in the (a) Σ-scaled results than the
(d) non-scaled results. The prominence of the zero coefficients in AΣ are demonstrated by the log-scale histogram (c), with a zero-bin of approximately 2.5
orders of magnitude greater than the other bins. (f) The resulting confusion matrix from the leave-one-out linear SVM cross validation testing of AΣ

test, across
all ten folds.

Algorithm 3 KSVD

Require: V,S,F,A = (aij)
1: for k = 1, . . . ,K do
2: idxs = {i : aki 6= 0}
3: Fk = 0
4: I = Vidxs − FAidxs

5: {Fk,Ak
idxs} = argmin

f ,a
||S−1/2 (I− f ⊗ a) ||2Fro

6: end for
7: return F,A

3) Alternate minimization: Now that we have defined our
primitives for optimizing the coefficient matrix A and the
dictionary F, we present the high level algorithm SAFL, for
solving (3) with scaling matrix S = I or S = Σ. Algorithm 4
is achieved by alternating the coefficient optimization and the
dictionary optimization.

Algorithm 4 SAFL

Require: V,S
1: Initialize: F,A
2: while not stopping criteria do
3: A← ForwardBackwardSplitting(V,S,F,A)
4: F,A← KSVD(V,S,F,A)
5: end while

IV. RESULTS: APPLICATION TO FMRI MEASUREMENTS
OF NEURAL ACTIVITY

To demonstrate the effectiveness of our approach, we apply
SAFL to publicly available fMRI data [6], as described in

Section II. The preprocessing of the data is described in
Section II-A. Briefly, the data is transformed from temporal
data to event driven neural activation values corresponding to
the presented stimuli, resulting in a 500 × 315 signal matrix
V and a 500 × 35 testing matrix Vtest.

In the following results we used a dictionary size of 100
with µ = 1, λ = 600 and γ = 1

3 , implying a gradient penalty
which is one-third of the strength of the `1 penalty. Applying
Algorithm 4 using the scaling matrix defined by (4), we get
the Σ-scaled results {FΣ,AΣ} ← SAFL(V,Σ). Figure 1 (a)
shows AΣ, a sparse low-dimensional representation of V. The
values of AΣ are also portrayed as a log-scale histogram
in Figure 1 (c). Note that the bin at zero is more than
2.5 orders of magnitude larger than the other bins which,
along with dimensionality reduction, achieves a compression
rate of more than 98% from the original signal matrix V.
For comparison, we also generated the non-scaled results
{FI,AI} ← SAFL(V, ID), with the resulting coefficients
shown in Figure 1 (d). The non-scaled result does not demon-
strate banding as strongly as the Σ-scaled result due to the
lack of scaling by the voxel-specific data dispersion model.

In Figure 2, the FA activity reconstruction results are
shown for both the Σ-scaled (a), and non-scaled (c) formula-
tions, with comparisons drawn from the original signal matrix
(b). It is interesting that the reconstruction is more faithful in
the non-scaled formulation, but the banding is much stronger in
the Σ-scaled model. In both models, the banding is a result of
forced similarity in adjacent (same-stimulus) signals. However,
the Σ-scaled results are a product of the voxel specific scaling
which compensates penalties for expected errors, allowing for
more freedom in the model fitting. As can be seen in (a) the



(a) (b) (c)

Fig. 2. Reconstruction results. The column indices correspond to the first 100 signal representations and the rows correspond to the first 100 voxels. (a)
Reconstruction of the neural signals by FΣAΣ, (b) the recorded neural signals V, (c) reconstruction of the neural signals by FIAI. The non-scaled solution (c)
can very accurately reconstruct the original neural signals, including the non-stimulus specific activity. On the other hand, the Σ-scaled solution (a) demonstrates
stronger blocks of homogeneous signal that would be expected for stimulus-sorted data. This could be interpreted as a cleaner signal with non-stimulus specific
activity minimized.

scaling removes non-stimulus specific activity and provides for
a cleaner signal than the non-scaled results of (c). Which is
also supported by the classification results below.

Using LIBSVM’s internal leave-one-out cross validation
linear classifier, we get a correct classification rate of 92%
for V, 94% for AI and 100% for AΣ. These classifica-
tion results are only valid when SAFL is used purely as a
sparse data compressing transformation. These classification
results demonstrate that Σ-scaled SAFL not only preserves
distinguishable signals, but the transformation also decreases
non-stimulus specific activity that is pervasive in the original
patterns.

SAFL, however, is a supervised learning algorithm
since it relies on sorted data. Thus, to perform cross-
validation tests for data with truly unknown labels it
is important to exclude testing data from the original
transformation. In this situation a dictionary is learned from
the training data as before but the sparse testing signal Atest
is computed separately from the left-out testing data Vtest.
We proceed by generating the testing data by AΣ

train ←
ForwardBackwardSplitting(Vtrain,Σ,F

Σ) and
AI

train ← ForwardBackwardSplitting(Vtrain, ID,F
I),

visualized in Figure 1 (b) and (e) respectively. The testing
data is processed without class labels so ordering the data to
leverage the gradient is not possible. Though other options are
plausible for coefficient optimization on the testing data, we
use the same forward-backward splitting (Algorithm 1) with
γ = 0 to remove the gradient penalty. All other parameter are
as before.

With the testing data separated in this way we use the
separate svmtrain and svmpredict methods of LIBSVM
on the training and testing data respectively. After repeating the
procedure for all 10 folds the classification success rates were
89% for Vtest, 62% for AI

test and 93% for AΣ
test. The confusion

matrix for AΣ
test is shown in Figure 1 (f). The decrease in

classification rate for the raw signals (from 92% to 89%) is
due to the preprocessing of the data, which is itself supervised
in the choice for the design matrix and learning the HRF [6].
Preprocessing Vtest cannot leverage the data labels as is done
in preprocessing V which results in more noise in the final
raw signal set Vtest.

The superiority of the Σ-scaled over the non-scaled results

can be explained by the heuristic depicted in Figure 3. This
figure shows signal similarity as measured by the dot product.
The top three figures indicate the self-similarity of the signal
matrices V, AΣ and AI, in order. Likewise, the bottom
three figures indicate the similarity between the training signal
matrix and the testing signal matrix, in the same order. In
the non-scaled results (third column) it appears to be more
difficult to distinguish between signals, due to generally higher
similarity, than in the second column derived from the Σ-
scaled formulation. This agrees with the SVM classification
from above. Similarity matrices can only be used as a heuristic,
however, since the first column corresponds to the raw values
which classifies better than the resulting non-scaled signal
under SVM, yet appear more difficult to distinguish.

To test robustness of SAFL, we varied the dictionary size
from 50 features to 250 features, γ from 200 to 1800, and
λ from 1

8 to 5
4 . The average classification rate on the testing

data through all these experiments was 88%, with a minimum
of 79% and a maximum of 93%. Though the study was not
a full exploration of the parameter space, the typically high
results and variety of parameters used indicate finding effective
parameters is not difficult. Moreover, to test for initialization
sensitivity, SAFL was repeated ten times with different data
initializations resulting in no more than a 2% change in final
classification rate.

V. DISCUSSION & CONCLUSION

Given a set of noisy signals, V, we demonstrated a machine
learning framework that trains a dictionary and produces
a low-dimensional, sparse signal representation, F and A
respectively, such that V ≈ FA. Our framework provides
powerful compression of the original training data as well
as unlabeled testing data Vtest. Beyond signal compression,
the resulting sparse signals were also shown to produce better
classification results than the raw values when evaluated by a
linear SVM classifier, demonstrating the clean signal extraction
capabilities of our framework which minimizes non-stimulus
specific activity. The atomic features learned by SAFL provide
further evidence that sparse coding is used for neural repre-
sentations of visual objects and scenes. In future work, we
plan to examine how this decodable sparse code shares atomic
features between related stimuli, and individual differences for
the atomic features and sparse coding.
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Fig. 3. Signal similarity analysis from pairwise inner-products of the signals providing a visual heuristic of how well signals can be differentiated. In each
image XT Y is shown for signal matrices X and Y. The component at (i, j) is a measure of similarity between signals Xi and Yj . The top row is the
self-similarity matrices for: (a) V, (b) AΣ, (c) AI. The bottom row is the train-to-test similarity matrices for: (d) V and Vtest, (e) AΣ and AΣ

test, (f) AI

and AI
test. We would expect a block diagonal similarity matrix for highly distinguishable signals as like-stimuli should produce similar signals and differing

stimuli should produce different signals. Note that though the original signals V, portrayed in (a) and (d), do not give a block-diagonal dominant matrix the
data still classifies well with SVM so similarity matrices can only be used as a heuristic. However the transformed signals for the non-scaled model, (c) and
(f), do not classify nearly as well while those from the Σ-scaled transformed, (b) and (e), outperforms the original signal, as one might expect from its strong
block-diagonal similarity matrices.

Though sparsity with gradient minimization in one di-
mension has been proposed before in the fused lasso [1],
SAFL differs in that a two dimensional data structure is used
with gradient minimization in only one direction, increasing
the difficulty of the problem. Split Bregman has also been
proposed for solving the system [15], however we found
that in two dimensions the required operator inversion was
too costly. SAFL first uses forward-backward splitting to
decouple the problem, resulting in an easy gradient descent
step which eliminates the need for a difficult inversion in the
Split Bregman routine.
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