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Abstract—In a typical functional brain imaging experiment,
brain activities in response to several trials are measured.
Recorded signals are then averaged across similar trials for each
channel/voxel to obtain time-courses associated with the task
of interest. Majority of functional connectivity studies employ
these averaged signals to study brain’s functional connections
across channels/voxels. The assumption here, however, is that
functional connections among brain networks do not change
across trials during the course of the experiment. In this paper,
we argue that this assumption may not always hold true. Using
Functional Near-Infrared Spectroscopy (fNIRS), brain activities
of five healthy adults in response to modified visual oddball
task are recorded. Wavelet transform coherence (WTC) is then
used to assess functional connectivity by considering recordings
corresponding to three scenarios: i) the first half of total number
of similar trials, ii) the second half of total number similar
trials, and iii) the entire number of similar trials. Nonparametric
permutation testing is utilized to examine the statistical difference
in functional connectivity when assessed in these three scenarios.
Observed differences suggest that brain’s functional connectivity
across similar trials changes during the course of the experiment,
potentially due to changes in functional connections among brain
networks as a result of task repetition.

I. INTRODUCTION
The human brain, a network of 100 billion neurons [1], is

known to be one of the most complex systems in nature. To
date, a variety of imaging tools along with signal processing
techniques, have been utilized to advance our knowledge about
the mechanisms underlying the brain function. Among these
techniques, studies of resting-state and task-based functional
connectivity [2], aiming at identifying statistically similar
behaving regions of the brain, have recently received increased
attention [3]–[6]. These studies investigate how different net-
works in the brain (which are not necessarily anatomically
connected) are functionally coupled together, and how these
couplings relate to a particular process or task. Recent studies
of functional connectivity in patients with neurological and
psychiatric disorders [7]–[9], suggest that functional connec-
tivity has a great potential to become a clinical tool for the
early diagnosis of brain-related disorders.

To study task-based functional connectivity, first, task-
related activities from different regions of the brain need to
be identified. A common approach is to record brain activities
of participants when they are engaged in experiments with
multiple trials related to the task of interest. The recorded time-
courses across similar trials are then averaged to estimate the
task-related time-course for each channel/voxel. The second
step is to assess the statistical dependencies between these

averaged time-courses. Several similarity metrics including
model-dependent measures (e.g. seed-based correlation [10]),
data driven measures (e.g. independent component analysis
(ICA) [11], [12]), and multiresolution analysis (e.g. wavelet
transform coherence (WTC) [13]) have been used to quantify
functional connections among brain regions.

One assumption in this approach is that brain’s functional
connections do not change during the experiment across re-
peated trials. However, variability in time-courses from trial
to trial has been reported in previous studies [14]–[16]. To
investigate changes in brain’s functional connections during
the course of an experiment, we study functional connectivity
during three temporal segments. These segments correspond
to the first half, the second half, and the entire number of
similar trials. Recordings of brain activities are made using
Functional Near-Infrared Spectroscopy (fNIRS). fNIRS is a
promising non-invasive technique which uses light in the
range of 690 nm to 1000 nm to measure the local changes
in the cerebral concentration of oxy- (∆HbO2) and deoxy-
hemoglobin (∆HbR) associated with the underlying brain
activities [14], [17]–[19]. Wavelet transform coherence (WTC)
is used to assess statistical similarities among time-courses
from different channels. Two-sample nonparametric statistical
testing is then performed to compare the statistical differences
in functional connectivity when assessed in the three scenarios.

This paper is organized as follows: in Section II details
of the experimental procedures are provided. In Section III
preprocessing steps, similarity and statistical analysis are
described. Finally, results and conclusions are presented in
Section IV.

II. EXPERIMENTAL PROCEDURES

Five right-handed male healthy volunteers (mean age 26.5
years, range 20-34) participated in this study after providing
written informed consents. The experimental procedures were
approved by the Rutgers University Institutional Review Board
prior to the experiment.

The modified visual odd ball task [20] was used as the
paradigm for this study. It consisted of three graphical stimuli
(plus, square, circle), as shown in Fig. 1, which were presented
to participants in random order. Participants were instructed
to press the left button of the mouse once the target stimulus
(“plus”) is shown on the screen. The total number of trials
was 220 stimuli, from which 30 were the target stimuli, and
190 were non-target stimuli. Each stimulus was presented for



50 ms, with inter-trial interval (ITI) of 10−12 s. The random
range for ITI was selected to minimize the periodic systemic
components [21].

Fig. 1. Experimental paradigm for the visual odd ball task.

NIRS data were collected via NIRx System (NIRScout,
NIRx Medical Technologies, LLC). The system included 16
sources (LED diodes) and 16 detectors, and recordings were
made at a sampling rate of 10.42 Hz. Measured signals from
source-detector pairs with distance of 3 mm of separation
were considered, resulting in total number of 38 channels.
Optodes were placed over the prefrontal and visual regions of
the cortex. Each source consisted of two LED diodes (760 nm
and 830 nm).

III. METHODS

A. Preprocessing

The modified Beer Lambert law (MBLL) [22] was used
to extract ∆HbO2 and ∆HbR signals. The extracted signals
were detrended, segmented (according to trials) and baseline-
corrected. To detect trials with artifacts, trials with either rapid
changes [23] or with outliers (based on statistical distribution)
were detected and removed from further analysis.

B. Wavelet Transform Coherence

Wavelet transform coherence (WTC) enables the analysis of
the coherence and phase lag between two time series in both
time and frequency domains [13], [24]–[26], and therefore,
can be used as a measure of functional connections between
recorded signals. The Morlet wavelet (with ω0 = 6), was used
in this study as the wavelet function [13], [27]:

ψ0(η) = π−1/4eiω0ηe−η2/2, (1)

where ω0 and η are the selected frequency and time resolution,
respectively. For signal xn with length N , its continuous
wavelet transform is defined as the convolution of xn with
the scaled and normalized wavelet:
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where the parameter n is the time index, s is the scale which
is used to stretch the wavelet in time, ∆t is the size of uniform
time step. The wavelet transform coherence (WTC) is defined
as [28]:
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Fig. 2. Wavelet transform coherence between ∆HbO2 signal recorded from
Channel 1 and ∆HbO2 signal recorded from Channel 26. The upper high
coherence band around period of 8 (frequency of 0.77 Hz) corresponds to
the cardiac activity. The lower high coherence band between the period of
104 and 125 (frequency of 0.08 Hz and 0.1 Hz respectively) relates to the
task.

In (3), S represents smoothing in both time and scale. WTC
reveals the time-frequency phase-locked behavior and thus it
was used here to characterize the localized similarity between
the two signals recorded from two brain regions. The Matlab
package presented by [27] was used for the analysis.

C. Nonparametric Permutation Testing

Recorded ∆HbO2 signals from each subject were divided
into two segments: Segment 1 and Segment 2, which in-
cluded the time-courses corresponding to the first half and the
second half of the number of total target trials, respectively.
Nonparametric permutation testing, based on WTC values, was
then used to test whether there is a significant difference in
functional connectivity when assessed from time-courses in
Segment 1, Segment 2, or the entire number of target trials.
Compared to traditional parametric testing techniques which
rely on assumptions about the shape of the distribution (e.g. a
normal distribution), non-parametric statistical testings do not
require assumptions about the shape or the parameters of the
population distribution, thus they are appropriate to be used for
datasets with unusual distributions [29]. The null-hypothesis
here is that there is no difference in cross-coherence values
when computed from time-courses in three difference cases
(Segment 1, Segment 2, and the entire trials).

IV. RESULTS AND DISCUSSION

As stated previously, WTC was used to quantify the similar-
ity between channel pairs. As a result, a series of scalograms,
specifying the localized cross-coherence values for the time-
courses of each channel pair were generated (see Fig. 2). The
entire time-courses of ∆HbO2 were used to generate the scalo-
grams. Taking into account the ITI, the cross-coherence values
in the frequency band of [0.08 Hz-0.1 Hz], where the “target”
stimuli was presented to subjects, were considered for the
similarity analysis. The mean cross-coherence values within
this frequency band for the survived trials for each channel
pair were then calculated as a measure of connectivity between
the two channels. Across all subjects, 47 trials in Segment 1,
and 36 trials in Segment 2 survived the preprocessing step.



Fig. 3. Flowchart for the generation of coherence vectors for each channel-
pair, from Segment 1 and Segment 2 respectively. These vectors are used for
the permutation testing to examine whether there is a change in the similarities
of channel-pairs in two cases.

Since there are 38 channels, this procedure generated a 38×38
similarity matrix for each trial. Coherence vectors including
the mean cross-coherence values for all the survived trials for
each channel-pair in each segment were then generated (see
Fig. 3). Next, permutation testing were employed to test the
statistical difference between connectivity for each channel-
pair when assessed from Segment 1 against when assessed
from Segment 2. For this analysis, a relatively large number
of iteration (1000), was considered.

The calculated p-values from the statistical test were used
to form a 38 × 38 matrix. Values larger than 0.01 were set
to zero. The remaining values were then utilized to construct
the 3D maps of connections among different channels (Fig.
4-a). With p <0.01, 102 channel-pairs presented significant
difference in functional connectivity when assessed in two
segments.

Additionally, a similar set of analysis was performed to
compare the difference in functional connectivity when as-
sessed from recordings of each segment and from the entire
trials. The channel-pairs with significant changes (p <0.05)
in the similarity are visually illustrated in Fig. 4-b Segment 1
vs. entire trials comparison, and in Fig. 4-c for Segment 2
vs. entire trials comparison. 18 and 65 channel-pairs showed
significant statistical differences in Fig. 4-b and Fig. 4-c, re-
spectively. These results suggest that there may exist dynamic
behaviors in the functional connectivity across the repeated
trials of the same nature, and ignoring these changes will
introduce bias in the conclusions of functional connections
among brain networks.
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